نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

10.22068/jstc.2024.2015779.1866

چکیده

هدف این پژوهش پیشنهاد یک روش ارزیابی غیرمخرب به وسیله گسترش امواج هدایت شونده برای بررسی کاهش ضخامت (خوردگی) در لوله های فلزی پوشش داده با کامپوزیت بوده است. ابتدا مدل اجزای محدود یک لوله فولادی به ضخامت 4 mm و قطر 200 mm پوشش دهی شده با کامپوزیت لایه ای ایجاد شد، که در آن روکش کامپوزیتی از لایه های نمد الیاف شیشه خرد شده و پارچه فیبر شیشه روینگ بافته شده تشکیل شده بود. سپس مود نامتقارن اساسی موج هدایت شونده با فرکانس 100 kHz در راستای طولی سازه گسترش داده شد و سرعت فازی موج در نمونه هایی با میزان خوردگی متفاوت لوله فولادی اندازه گیری شد. در مرحله ی اول، خوردگی به صورت یکپارچه در سرتاسر لوله و در مرحله بعد در قسمتی از لوله با طول مشخص و زوایای محیطی 90، 180 و 360 درجه ایجاد شد. نشان داده شد که میزان کاهش سرعت فاز موج در قسمت های دارای خوردگی نسبت به قسمت سالم بین 9% تا 33% برای میزان خوردگی های مختلف بوده است. همچنین، تشخیص وجود، محل و میزان خوردگی در قسمت فولادی لوله به کمک روش گسترش امواج هدایت شونده با دقت مناسبی انجام شد. نتیجه گیری شد که روش شبیه سازی گسترش امواج هدایت شونده می تواند به عنوان یک آزمایشگاه مجازی به منظور توسعه روش هایی برای ارزیابی غیرمخرب لوله های پوشش-دهی شده با کامپوزیت و تشخیص محل و میزان خوردگی در آنها مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Nondestructive evaluation of corrosion in pipes with composite coating with the finite element simulation of guided wave propagation

نویسندگان [English]

  • Parsa Ghasemi 1
  • Siavash Kazemirad 2

1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

This study aimed to propose an NDE method based on the guided wave propagation for assessing the thickness loss (corrosion) in the metal pipes coated with composites. First, the finite element model of a steel pipe with the thickness of 4 mm and diameter of 200 mm coated with a layered composite material was developed, in which the composite coating constituted by the chopped strand glass fiber mat and woven roving glass fiber cloth layers. Then, the fundamental antisymmetric guided wave mode with the frequency of 100 kHz was propagated in the longitudinal direction of the structure and the phase velocity of the propagated wave was measured in specimens with different corrosion extent in the steel pipe. In the first step, a uniform corrosion was induced throughout the pipe, and in the next step, it was induced in a part of the pipe with a specific length and circumferential angles of 90, 180 and 360 degrees. It was shown that the reduction in the wave phase velocity in the corroded regions compared with the intact regions was between 9% to 33% for different corrosion extents. Besides, the detection of the corrosion in the steel pipe and its location and extent was properly performed using the guided wave propagation method. It was concluded that the simulated guided wave propagation method can be used as a virtual lab for the development of methods for nondestructive evaluation of pipes coated with composites and detection of the location and extent of corrosion in them.

کلیدواژه‌ها [English]

  • Guided waves
  • Composite coating
  • Coated structures
  • Finite element modeling
  • Ultrasound
[1]  Shokrieh, M. M. and  Omidi, M. J., “Reinforcement of Metallic Plates with Composite Materials“ Journal of composite materials, Vol. 39, No. 8, pp. 723-744, 2005.
[2]  Lee, Y.-C. and  Cheng, S.-W., “Measuring Lamb Wave Dispersion Curves of a Bi-Layered Plate and Its Application on Material Characterization of Coating“ IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 48, No. 3, pp. 830-837, 2001.
[3]  Ebrahiminejad, A., Mardanshahi, A., Kazemirad, S., “Nondestructive evaluation of coated structures using Lamb wave propagation“ Applied Acoustics, Vol. 185, pp. 108378, 2022.
[4]  Ramezani, H., Kazemirad, S., Shokrieh, M. and Mardanshahi, A., “Effects of Adding Carbon Nanofibers on the Reduction of Matrix Cracking in Laminated Composites: Experimental and Analytical Approaches“ Polymer Testing, pp. 106988, 2020.
[5]  Mardanshahi, A., Nasir, V., Kazemirad, S. and Shokrieh, M., “Detection and Classification of Matrix Cracking in Laminated Composites Using Guided Wave Propagation and Artificial Neural Networks“ Composite Structures, pp. 112403, 2020.
[6]  Mardanshahi, A., Shokrieh, M. and Kazemirad, S., “Identification of Matrix Cracking in Cross-Ply Laminated Composites Using Lamb Wave Propagation“ Composite Structures, Vol. 235, pp. 111790, 2020
[7]  Fattahi, A., Ramezani, H., Shokrieh, M. M., Kazemirad S., “Detection and characterization of matrix cracking in fiber‐metal laminates using Lamb wave propagation“ Structural Control and Health Monitoring, Vol. 29, pp. e3039, 2022.
[8]  Riahi , M. and Ahmadi , A., “Utilization of Artificial Neural Networks for Detection and Classification of Damages in Composite Plate-Like Structures Via Ultrasonic Guided Waves,“ In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 343-352, 2018.
[9]  Castaings, M., Singh, D. and Viot, P., “Sizing of Impact Damages in Composite Materials Using Ultrasonic Guided Waves“ NDT & E International, Vol. 46, pp. 22-31, 2012.
[10] Gao, F., Zeng, L., Lin, J. and Shao, Y., “Damage Assessment in Composite Laminates Via Broadband Lamb Wave“ Ultrasonics, Vol. 86, pp. 49-58, 2018.
[11] Wang, L. and Rokhlin, S., “Stable Reformulation of Transfer Matrix Method for Wave Propagation in Layered Anisotropic Media“ Ultrasonics, Vol. 39, No. 6, pp. 413-424, 2001.
[12] Castaings, M. and Hosten, B., “Guided Waves Propagating in Sandwich Structures Made of Anisotropic, Viscoelastic, Composite Materials“ The Journal of the Acoustical Society of America, Vol. 113, No. 5, pp. 2622-2634, 2003.
[13] Simonetti, F., “Lamb wave propagation in elastic plates coated with viscoelastic materials“ The Journal of the Acoustical Society of America, Vol. 115, No. 5, pp. 2041–2053, 2004.
[14] Kazemirad, S.,  Mongeau, L., “Rayleigh wave propagation method for the characterization of a thin layer of biomaterials“ The Journal of the Acoustical Society of America, Vol. 133, No. 6, pp. 4332–4342, 2013.
[15] Dahmen, S., Amor, M. B. and Ghozlen, M. H. B., “Investigation of the Coupled Lamb Waves Propagation in Viscoelastic and Anisotropic Multilayer Composites by Legendre Polynomial Method“ Composite Structures, Vol. 153, pp. 557-568, 2016.
[1]  Shokrieh, M. M. and  Omidi, M. J., “Reinforcement of Metallic Plates with Composite Materials“ Journal of composite materials, Vol. 39, No. 8, pp. 723-744, 2005.
[2]  Lee, Y.-C. and  Cheng, S.-W., “Measuring Lamb Wave Dispersion Curves of a Bi-Layered Plate and Its Application on Material Characterization of Coating“ IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 48, No. 3, pp. 830-837, 2001.
[3]  Ebrahiminejad, A., Mardanshahi, A., Kazemirad, S., “Nondestructive evaluation of coated structures using Lamb wave propagation“ Applied Acoustics, Vol. 185, pp. 108378, 2022.
[4]  Ramezani, H., Kazemirad, S., Shokrieh, M. and Mardanshahi, A., “Effects of Adding Carbon Nanofibers on the Reduction of Matrix Cracking in Laminated Composites: Experimental and Analytical Approaches“ Polymer Testing, pp. 106988, 2020.
[5]  Mardanshahi, A., Nasir, V., Kazemirad, S. and Shokrieh, M., “Detection and Classification of Matrix Cracking in Laminated Composites Using Guided Wave Propagation and Artificial Neural Networks“ Composite Structures, pp. 112403, 2020.
[6]  Mardanshahi, A., Shokrieh, M. and Kazemirad, S., “Identification of Matrix Cracking in Cross-Ply Laminated Composites Using Lamb Wave Propagation“ Composite Structures, Vol. 235, pp. 111790, 2020
[7]  Fattahi, A., Ramezani, H., Shokrieh, M. M., Kazemirad S., “Detection and characterization of matrix cracking in fiber‐metal laminates using Lamb wave propagation“ Structural Control and Health Monitoring, Vol. 29, pp. e3039, 2022.
[8]  Riahi , M. and Ahmadi , A., “Utilization of Artificial Neural Networks for Detection and Classification of Damages in Composite Plate-Like Structures Via Ultrasonic Guided Waves,“ In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 343-352, 2018.
[9]  Castaings, M., Singh, D. and Viot, P., “Sizing of Impact Damages in Composite Materials Using Ultrasonic Guided Waves“ NDT & E International, Vol. 46, pp. 22-31, 2012.
[10] Gao, F., Zeng, L., Lin, J. and Shao, Y., “Damage Assessment in Composite Laminates Via Broadband Lamb Wave“ Ultrasonics, Vol. 86, pp. 49-58, 2018.
[11] Wang, L. and Rokhlin, S., “Stable Reformulation of Transfer Matrix Method for Wave Propagation in Layered Anisotropic Media“ Ultrasonics, Vol. 39, No. 6, pp. 413-424, 2001.
[12] Castaings, M. and Hosten, B., “Guided Waves Propagating in Sandwich Structures Made of Anisotropic, Viscoelastic, Composite Materials“ The Journal of the Acoustical Society of America, Vol. 113, No. 5, pp. 2622-2634, 2003.
[13] Simonetti, F., “Lamb wave propagation in elastic plates coated with viscoelastic materials“ The Journal of the Acoustical Society of America, Vol. 115, No. 5, pp. 2041–2053, 2004.
[14] Kazemirad, S.,  Mongeau, L., “Rayleigh wave propagation method for the characterization of a thin layer of biomaterials“ The Journal of the Acoustical Society of America, Vol. 133, No. 6, pp. 4332–4342, 2013.
[15] Dahmen, S., Amor, M. B. and Ghozlen, M. H. B., “Investigation of the Coupled Lamb Waves Propagation in Viscoelastic and Anisotropic Multilayer Composites by Legendre Polynomial Method“ Composite Structures, Vol. 153, pp. 557-568, 2016.
[16] Jenot, F., Ouaftouh, M., Duquennoy, M. and  Ourak, M., “Corrosion Thickness Gauging in Plates Using Lamb Wave Group Velocity Measurements“ Measurement Science and Technology, Vol. 12, No. 8, pp. 1287, 2001.
[17] Rao, J., Ratassepp, M., Lisevych, D., Hamzah Caffoor, M. and  Fan, Z., “On-Line Corrosion Monitoring of Plate Structures Based on Guided Wave Tomography Using Piezoelectric Sensors“ Sensors, Vol. 17, No. 12, pp. 2882, 2017.
[18] Azimi, S.A., Mardanshahi, A., Kazemirad  S., “Nondestructive thickness mapping of corroded plate structures using guided Lamb wave propagation“ Journal of Theoretical and Applied Vibration and Acoustics, Vol. 7, No. 1, pp. 15-28, 2021.
[19] Daryabor, P., Farzin, M. and Honarvar, F., “Calculating the Lamb wave modes in an aluminum sheet bonded to a composite layer with FEM and experiment“ Modares Mechanical Engineering Journal, Vol. 13, No. 1, pp. 95-106, 2013.  
[20] Alleyne, D. N. and  Cawley, P., “The Interaction of Lamb Waves with Defects“ IEEE transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 39, No. 3, pp. 381-397, 1992.
[21] Ramadas, C., Balasubramaniam, K., Hood, A., Joshi, M. and  Krishnamurthy, C., “Modelling of Attenuation of Lamb Waves Using Rayleigh Damping: Numerical and Experimental Studies“ Composite Structures, Vol. 93, No. 8, pp. 2020-2025, 2011.
[22] Yang, C., Ye, L., Su, Z. and  Bannister, M., “Some Aspects of Numerical Simulation for Lamb Wave Propagation in Composite Laminates“ Composite structures, Vol. 75, No. 1-4, pp. 267-275, 2006.
[23] Parvari, Y., Ramezani, H., Kazemirad, S., Nondestructive evaluation of bilayer metal-composite structures using finite element simulation of guided Lamb wave propagation, Journal of Science and Technology of Composites, 8 (2022), 1700-1701.
[24] Mardanshahi, A., Shokrieh, M. and Kazemirad, S., “Simulated Lamb wave propagation method for nondestructive monitoring of matrix cracking in laminated composites“ Structural Health Monitoring, Vol. 21, No. 2, pp. 695-709, 2022.