نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک، دانشگاه تربیت مدرس ، تهران.

2 استاد، مهندسی مکانیک، دانشگاه تربیت مدرس، تهرا ن.

10.22068/jstc.2023.2013986.1863

چکیده

به دست آوردن مقادیر تنش‌ها در پوسته کروی یک مخزن چند لایه کامپوزیتی جدار نازک به روشی کاملا تحلیلی و بدون نیاز به استفاده از روش‌های عددی در حل معادلات، موضوعی است که تا کنون بررسی نشده است. در این مقاله با استفاده از حلی کاملا تحلیلی به کمک تئوری کلاسیک پوسته‌ها، مقادیر تنش‌ها در هر لایه از پوسته کروی مخزن چند لایه کامپوزیتی جدار نازک به دست آمده است. در این روش حل با استفاده از معادلات تعادل، قانون هوک، روابط کرنش - جابجایی و انحنا – جابجایی، معادلات حاکم بر پوسته دوران یافته عمومی کامپوزیتی استخراج گردیده و سپس معادلات حاکم بر پوسته کروی متقارن به دست آمده‌اند. در ادامه به کمک معادلات سازگاری جابجایی و چرخش، نیروها و تنش‌ها در تقاطع پوسته کروی و استوانه کامپوزیتی استخراج شده‌اند و پس از آن تنش‌های طولی و محیطی در پوسته کروی مخزن کامپوزیتی جدار نازک تحت فشار داخلی در هر لایه به دست آمده‌اند. در نهایت نتایج حل کاملا تحلیلی بر مبنای تئوری کلاسیک پوسته‌ها با نتایج حل عددی اجزاء محدود مقایسه شده و نشان داده شده است مقادیر تنش حاصل از نتایج تحلیلی انطباق خوبی با نتایج حل عددی دارند و می‌توان با استفاده از نتایج این حل تحلیلی مخازن کامپوزیتی را به صورت بهینه طراحی نمود

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analytical solution for stresses in the spherical shell of a thin-wall composite multi-layer vessel under internal pressure by using the classical theory of shells

نویسندگان [English]

  • Hossein Farajollahi 1
  • Gholamhossein Rahimi 2

1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.

2 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.

چکیده [English]

Obtaining stress values in spherical shell of a thin-walled composite multi-layer vessel in a completely analytical way and independent of numerical methods in solving the equations is a subject that has not been investigated so far. In this article, using a fully analytical solution based on classical shell theory, the stress values in each layer of the spherical shell are obtained. In this solution method, by using equilibrium equations, Hooke's law, strain-displacement and curvature-displacement relations, the governing equations of general composite shells of revolution are extracted and then the governing equations of a symmetric spherical shell are obtained. In the following, using displacement and rotation consistency equations, forces and stresses at the intersection of the spherical and cylindrical composite shell are calculated, and then the longitudinal and circumferential stresses due to internal pressure are extracted in each layer. Finally, the results are compared with the results of the finite element numerical solution and it is shown that the stress values obtained from the analytical results are in good agreement with the results of the numerical solution and it is possible to use the results of this analytical solution to make optimally designed composite vessels.

کلیدواژه‌ها [English]

  • Analytical Solution
  • Classic Theory
  • Spherical Shell
  • Multi-Layer Composite Vessel
  • Thin-Walled
[1] Betti, F., “Design and development of Vega solid rocket motor
composite case,” Joint Propulsion Conference, 2007.
[2] Couroneau, N., “Predicting the mechanical behavior of large composite rocket motor cases,” High Performance Structures,Vol.85, 2006.
[3] Matalloni, A., “Z40 solid rocket motor design status of motor case
Structure,” Materials & Environmental Testing, 2000.
[4] Erturan, Y., “Development of a structural design methodology for filament winding composite rocket motor case,” Journal of Pressure Vessel and Piping, 2019.
[5] Betten, J., “Finite element analysis of composite pressure vessels,” International Astronautically Congress of the International Astronautically Federation, 2003.
[6] Jebeli, M., Heidari-Rarani, M., “Development of Abaqus WCM plugin for progressive failure analysis of type IV composite pressure vessels based on Puck failure criterion,” Engineering Failure Analysis, Vol. 131, 2022.
[7] Mirmohammad, SH., Safarabadi, M., Karimpour, M., Aliha, MRM., Berto, F., “Study of composite fiber reinforcement of cracked thin-walled pressure vessels utilizing multi-scaling technique based on extended finite element method,” Strength of Materials, Vol. 50, pp. 925-936, 2019.
[8] Shahryarifard, M., Golzar, M., Safarabadi, M., “Novel Parameters in Load Capacity and Failure of Coaxial Steel Tubes Jointed by Wrapped GFRP Sleeve,” International Journal of Adhesion and Adhesives, 2017.
[9] Acar, B., “Design and validation of a filament wound composite rocket motor case,” Pressure Vessels Conference, 2018.
[10] Kumar, J., “Design and experimental validation of composite pressure vessel, ” Journal of Pressure Vessel and Piping, Vol. 7, No. 4, pp. 15-19, 2018.
[11] Houghton, D., “Discontinuity effects at the junction of a pressurized cylinder and end bulkhead,” Instant Mach Engineering, Vol. 175, No. 26, 1961.
[12] Rao, K., “Design and analysis of filament wound composite pressure vessel with Integrated-end domes,” Defense Science Journal, Vol. 59, No. 1, pp. 73-81, 2009.
[13] Musthak, M., “Prediction of structural behavior of FRP pressure vessel by using shear deformation theories,” Fifth International Conference of Materials Processing and Characterization, Vol. 4, pp. 872-882, 2017.
[14] Madhavi, M., “Study of Inter-Laminar behavior of geodesic wound composite pressure vessel by higher order shear deformation theories and finite element analysis,”International Journal of Composite Materials, Vol.9, No.3, pp.60-68, 2019.
[15] Eckold, G., “Design and manufacture of composite structures,”, pp. 130-139, 1994.
[16] Kumar, J., “Discontinuity stress in orthotropic pressure vessels,” Journal of Pressure Vessel and Piping, Vol. 72, pp. 63-72, 1997.
[17] Valery, V., “Composite pressure vessels Analysis design and Manufacturing,” pp. 204-222, 1993.
[18] Love, A., “Structural analysis of orthotropic shells,” AIAA Journal, 1963.
[19] Rahimi, G., “Experimental and numerical solution of composite Pressure vessel with metal liner,” In Persian, 11th National on Construction and production Engineering, 2000.
[20] Padovec, Z., “The analytical and numerical stress analysis of various domes for composite pressure vessels,” Applied and Computational Mechanics, Vol. 16, No. 1, pp. 151-166, 2022.
[21] Reddy, J., “Exact solutions of moderately laminated Shells. Journal of Engineering Mechanics,” pp. 794-799, 1984.
[22] Onder, A., “Burst failure load of composite pressure vessels,” Composite Structures, Vol. 89, pp. 159-166, 2009.
[23] Ramos, I., “Analytical and numerical studies of a thick anisotropic multi-layered fiber reinforced composite pressure vessel,”ASME Journal of Pressure Vessel Technology, 2018.
[24] Takayangi, H., “Analysis of multi layered filament wound composite pipe under internal pressure,” Composite Structures, Vol.53, pp. 483-491, 2001. [25] Vignolia,V., “Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel,”Journal of Solids and Structures, Vol. 15, No. 11, 2018.
[26] Sayya, A., “Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory,”Composite structures, Vol. 219, pp. 129-146, 2019.
[27] Ganesan.N., “ Interlaminar Stress In Spherical Shells,” Computer and Structures, Vol. 65, No. 4, pp. 575-583, 1997.
[28] Salvatore, B., “ A general exact elastic shell solution for bending analysis of functionally graded structures,” Composite Structures, 2017.
[29] Alavandi, B., “Three dimensional elasticity solution for static response of orthotropic doubly curved shallow shells on rectangular planform,” Composite Structures, Vol. 24, pp. 67-77, 1993.
[30] Jin,G., “Three-dimensional vibration analysis of laminated functionally graded spherical shells with general boundary conditions,” Composite Structures, Vol. 116, pp. 571-588, 2014.
[31] Timoshenko, S., “Theory of plates and shells,” Mc GRAW-HILL, Second Edition, 1960.
[32] Reddy, J., “Mechanics of laminated composite plates and shells,” CRC, Second Edition, 2003.
[33] Xu, p., “Finite element analysis of burst pressure of composite hydrogen storage vessels,” Material and Design, pp. 2295-2299, 2009.