نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشگاه رازی، کرمانشاه.

2 استاد، مهندسی مکانیک، دانشگاه رازی، کرمانشاه.

3 دانشیار، مهندسی مکانیک، دانشگاه آزاد اسلامی، کرمانشاه.

چکیده

یکی از مهمترین کاربردهای نانو مواد در رزین‌های پلیمری، دستیابی به چقرمگی شکست بالا حتی در کسرهای حجمی کم از نانوذرات پرکننده است. چنین عملکردی مربوط به انرژی آزاد شده از طریق مکانیزم‌های آسیب است که در مقیاس نانو رخ می‌دهد. در بین این مکانیزم‌ها جدایش سطحی نانوذره اهمیت بیشتری دارد. در کار حاضر باتوجه به ساختار سلسله مراتبی نانوکامپوزیت‌ها، سعی شده است که بااستفاده از روش چندمقیاسی اثر جدایش نانو ذرات گرافن از رزین اطراف آن بر چقرمگی شکست مود اول نانوکامپوزیت اپوکسی/گرافن مورد بررسی قرار گیرد. از این رو یک المان حجمی نماینده انتخاب شده است و با استفاده از داده‌های موجود در کارهای تجربی سایر محققین، اثر چندین پارامتر مانند مدول یانگ، کسر وزنی و ابعاد نانوگرافن مورد بررسی قرار گرفت. درنهایت مشاهده شد که چقرمگی شکست با مدول یانگ نانوکامپوزیت نسبت مستقیم دارد همچنین هر چقدر ابعاد نانو ذرات بکار رفته کوچکتر باشد، بهبود در چقرمگی شکست بیشتر خواهد بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of GNPs debonding on mode I fracture toughness of polymeric nanocomposites

نویسندگان [English]

  • Elham Moradi 1
  • Mohammad Hossein Yas 2
  • Afshin Zeinedini 3

1 Department of Mechanical Engineering, Razi University, Kermanshah, Iran.

2 Department of Mechanical Engineering, Razi University, Kermanshah, Iran.

3 Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

چکیده [English]

One of the most important applications of nanomaterials in polymer resins is to achieve high fracture toughness even in small volume fractions of filler nanoparticles. Such performance is related to energy released through damage mechanisms that occur at the nano scale. Among these mechanisms, nanoparticle surface separation is more important. In the present work, considering the hierarchical structure of nanocomposites, it has been tried to investigate the effect of debonding of graphene nanoparticles from the surrounding resin on the fracture toughness of the first mode of the presented epoxy/graphene nanocomposite using a multi-scale method. Therefore, a representative volume element has been selected and using the data available in the experimental works of other researchers, the effect of several parameters such as Young's modulus, weight fraction and dimensions of nanographene was investigated. Finally, it was observed that the fracture toughness has a direct relationship with the Young's modulus of the nanocomposite. Also, the smaller the dimensions of the nanoparticles used, the greater the improvement in the fracture toughness.

کلیدواژه‌ها [English]

  • Graphene nanoparticles
  • Fracture toughness
  • Nano composite
  • Multiscale model
[1]  Aleni, H.M., Liaghat, G.H., Pol, M.H. and Afrouzian, A., “An experimental investigation on mode-II interlaminar fracture toughness of nanosilica modified glass/epoxy fiber-reinforced laminates,” In Persian, Modares Mechanical Engineering, Vol. 15, No. 3, 2015.
[2] Alasvand Zarasvand, k., “Mechanical Property Determination of Graphene and Multi-Walled Carbon Nanotubes Reinforced Epoxy Nanocomposites,” MSc Thesis, Shahrekord University, Iran, 2016.
[3] Abbandanak, S., Siadati, M.H. and Eslami-farsani, R., “Effects of functionalized graphene nanoplatelets on the flexural behaviors of basalt fibers/epoxy composites,” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 315-324, 2018.
[4] Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S., “Graphene-Based Composite Materials,” Nature, Vol. 442, No. 7100, pp. 282-286, 2006.
[5] Moshrefzadeh-Sani, H. and Mohammadkhani, H., “A multi-scale cubic model to calculate the elastic modules of the graphene/polymer nano composites,” In Persian, Journal of Science and Technology of Composites, Vol. 7, No. 1, pp. 740-746, 2020.
 [6] Babazade, A., Hadad, M. and Safarabadi, M., “Investigation of the Effect of Graphene Nano Plates and Carbon Nanotubes on the Improvement of Mechanical Properties of Aluminum Matrix Nanocomposites,” In Persian, Journal of Science and Technology of Composites, Vol. 7, No. 4, pp. 1197-1206, 2021.
[7] Zappalorto, M., Salviato, M. and Quaresimin, M., “A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids,” Composites Science and Technology, Vol. 72, No. 14, pp.1683-1691, 2012.
[8] Shokrieh, M. M. and Zeinedini, A., “Effect of CNTs debonding on mode I fracture toughness of polymeric nanocomposites,” Materials & Design, Vol. 101, pp. 56-65, 2016.
[9] Quaresimin, M., Salviato, M. and Zappalorto, M., “A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites,” Composites Science and Technology, Vol. 91, pp. 16-21, 2014.
[10] Shin, H., “Multiscale model to predict fracture toughness of CNT/epoxy nanocomposites,” Composite Structures, Vol. 272, pp. 114236, 2021.
[11] Karimi, M., Ghajar, R. and Montazeri, A., “Investigation of nanotubes length and their agglomeration effects on the elastoplastic behavior of polymer-based nanocomposites,” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 2, pp. 229-240, 2017.
[12] Nielsen, Lawrence E. "Generalized equation for the elastic moduli of composite materials." Journal of Applied Physics 41, no. 11, pp.4626-4627, 1970.
[13] Lewis, T.B. and Nielsen, L.E., “Dynamic mechanical properties of particulate‐filled composites,” Journal of applied polymer science, Vol. 14, No. 6, pp. 1449-1471, 1970.
[14] Zeinedini, A., “Effect of carbon nanotubes on strain energy release rate of mixed mode I/II delamination initiation in laminated composites,” PhD Thesis, Science and Technology Department, Iran, 2017.
[15] Mori, T. and Tanaka, K., “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta metallurgica, Vol. 21, No. 5, pp. 571-574, 1973.
[16] Hill, R., “Elastic properties of reinforced solids: some theoretical principles,” Journal of the Mechanics and Physics of Solids, Vol. 11, No. 5, pp. 357-372, 1963.
[17] Eshelby, J., “Elastic inclusions and inhomogeneties,” Progr. Solid Mech, Vol. 2, p. 89-140, 1961.
[18] Eskandariyun, A., “Estimating Mechanical Properties of Graphene/Polymer Nanocomposites using Multiscale Modeling,” MSc Thesis, University of Tehran, Iran, 2018.
[19] Blackman, B.R.K., Kinloch, A.J., Sohn Lee, J., Taylor, A.C., Agarwal, R., Schueneman, G. and Sprenger, S., “The fracture and fatigue behaviour of nano-modified epoxy polymers,” Journal of Materials Science, Vol. 42, pp. 7049-7051, 2007.
[20] Hsieh, T.H., Kinloch, A.J., Masania, K., Sohn Lee, J., Taylor, A.C. and Sprenger, S., “The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles,” Journal of materials science, Vol. 45, pp. 1193-1210, 2010.
[21] Kolahi Toutakhaneh, H., “Fracture toughness and Fatigue properties of silica/epoxy nanocomposite using multi-scale method,” MSc Thesis, Urmia University, Iran, 2019.
[22] Liu, Y.J. and Chen, X.L., “Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element,” Mechanics of Materials, Vol. 35, No. 1–2, pp. 69-81, 2003.
[23] Freund, L.B. and Hutchinson, J.W., “High strain-rate crack growth in rate-dependent plastic solids,” Journal of the Mechanics and Physics of Solids, Vol. 33, No. 2, pp. 169-191, 1985.
[24] Zappalorto, M., Salviato, M. and Quaresimin, M., “Influence of the interphase zone on the nanoparticle debonding stress,” Composites Science and Technology, Vol. 72, No. 1, pp. 49-55, 2011.
[25] Williams, J.G., “Particle toughening of polymers by plastic void growth,” Composites science and technology, Vol. 70, No. 6, pp. 885-891, 2010.
[26] Jiang, L.Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K.C. and Liu, B., “A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force,” Journal of the Mechanics and Physics of Solids, Vol. 54, No. 11, pp. 2436-2452, 2006.
[27] Jiao, S. and Xu, Z., “Non-continuum intercalated water diffusion explains fast permeation through graphene oxide membranes,” ACS nano, Vol. 11, No. 11, pp. 11152-11161, 2017.
[28] Thostenson, E.T. and Chou, T.W., “On the elastic properties of carbon nanotube-based composites: modelling and characterization,” Journal of Physics D: Applied Physics, Vol. 36, No. 5, p. 573, 2003.
[29] Her, S.C. and Zhang, K.C., “Mode I Fracture Toughness of Graphene Reinforced Nanocomposite Film on Al Substrate,” Nanomaterials, Vol. 11, No. 7, pp, 1743, 2021.
[30] Domun, N., Hadavinia, H., Zhang, T., Liaghat, G., Vahid, S., Spacie, C., Paton, K.R. and Sainsbury, T., “Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content,” Nanocomposites, Vol. 3, No. 3, pp. 85-96, 2017.