نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران .

2 استاد تمام، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

3 استاد تمام، مهندسی مواد، پژوهشگاه مواد و انرژی، کرج.

10.22068/jstc.2023.2006000.1842

چکیده

کامپوزیت های زمینه پلیمری به دلیل سبکی، و استحکام و سفتی ویژه بالا از پرکاربردترین انواع کامپوزیت ها هستند. کامپوزیت های تقویت شده با الیاف از مهمترین کامپوزیت ها هستند و الیاف بازالت یکی از انواع الیاف معدنی مهمی است که در زمینه پلیمری استفاده می شود. در این پژوهش، اثر افزودن ذرات سیلیکا فیوم (که تاکنون در کامپوزیت های پایه پلیمری تقویت شده با الیاف استفاده نشده است) بر خواص مکانیکی کامپوزیت‌های اپوکسی- الیاف بازالت تحت بارگذاری‌های خمش و کشش مورد مطالعه قرار گرفت. ذرات سیلیکا فیوم با سیلان اصلاح سطحی شده و سپس با درصدهای مختلف (2، 4 و 6 درصد وزنی) با استفاده از همزن مکانیکی و امواج التراسونیک داخل زمینه اپوکسی توزیع شدند. برای ساخت نمونه‌های کامپوزیتی از روش لایه‌گذاری دستی استفاده شد. نتایج حاصل از این پژوهش نشان داد که با افزودن ذرات سیلیکا فیوم، بیشترین میزان بهبود در خواص استحکام و مدول کششی، و همچنین استحکام و مدول خمشی مربوط به نمونه حاوی 4 wt.% سیلیکا فیوم به ترتیب برابر با 22، 34، 27 و 40 درصد بهبود نسبت به نمونه فاقد سیلیکا فیوم بوده است. از طرفی نتایج آزمون‌های مکانیکی و بررسی ریزساختاری پس از شکست نشان داد که بهبود فصل مشترک بین الیاف و زمینه در نتیجه توزیع مناسب این ذرات داخل زمینه تأثیر بسزایی در بهبود خواص مکانیکی دارد. همچنین توزیع نامطلوب این ذرات منجر به افت خواص مکانیکی در بارگذاری‌های مختلف می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the effect of modified silica fume on the mechanical behavior of basalt fibers-epoxy composites under bending and tensile loading

نویسندگان [English]

  • Hosna Azizi 1
  • Reza Eslami-Farsani 2
  • Mohammad reza Vaezi 3
  • Ali Shokuhfar 2

1 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

2 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

3 Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran.

چکیده [English]

Polymer matrix composites are one of the most widely used types of composites due to their lightness, and special strength and stiffness. Fibers-reinforced composites are the most important composites, and basalt fibers are one of the important types of mineral fibers that are used in the matrix of polymers. In this research, the effect of addition of silica fume particles (which has not been used in fibers reinforced polymer composites) on the mechanical properties of basalt fibers-epoxy composites under bending and tensile loadings was studied. The silica fume particles are surface modified with silane and then with different percentages (2, 4 and 6 wt.%) were distributed inside the epoxy matrix using a mechanical stirrer and ultrasonic waves. Hand lay-up method was used to make composite samples. The results of this research showed that with the addition of silica fume particles, the greatest improvement in the properties of the tensile strength and modulus, as well as the bending strength and modulus of the sample containing 4 wt.% silica fume is 22, 34, 27 and 40% respectively in compared to the sample without silica fume. On the other hand, the results of mechanical tests and microstructural examination after failure showed that the improvement of the interface between the fibers and the matrix as a result of the proper distribution of these particles inside the matrix has a significant effect on improving the mechanical properties. Also, the unfavorable distribution of these particles leads to the loss of mechanical properties under different loadings.

کلیدواژه‌ها [English]

  • Polymer matrix Composites
  • Basalt fibers
  • Silica fume
  • Surface modification
  • Mechanical properties
[1]  Campbell, F. C., “Structural Composite Materials,”  ASM international, 2010.
[2]  Kumar, K. P., Sekaran, A. S., “Some Natural Fibers Used in Polymer Composites and Their Extraction Processes: A Review,” Journal of Reinforced Plastics and Composites, Vol. 33, No. 20, pp. 1879-1892, 2014.
  [3]Alderliesten, R., “On the Development of Hybrid Material Concepts for Aircraft Structures,” Journal of Recent Patents on Engineering, Vol. 3, No. 1, pp. 25-38, 2009.
[4]  Nunna, S., Chandra, P. R., Shrivastava, S., Jalan, A.k. “A Review on Mechanical Behavior of Natural Fiber Based Hybrid Composites,” Journal of Reinforced Plastics and Composites, Vol. 31, No. 11, pp. 759-769, 2012.
[5]  Pareek, K. and  Saha, P., “Basalt Fiber and Its Composites: An Overview,” in Proceeding of the National Conference on Advances in Structural Technologies (CoAST-2019), 2019.
[6] Khandelwal, S. and  Rhee, K. Y., “Recent Advances in Basalt-Fiber-Reinforced Composites: Tailoring the Fiber-Matrix Interface,” Composites Part B: Engineering, Vol. 192, pp. 108011, 2020.
[7]  Yan, L., Chu, F., Tuo, W., Zhao, X., Wang, Y., Zhang, P., Gao, Y., “Review of Research on Basalt Fibers and Basalt Fiber-Reinforced Composites in China (I): Physicochemical and Mechanical Properties,”  Journal of Polymers and Polymer Composites, Vol. 29, No. 9, pp. 1612-1624, 2021.
[8]  Diamond, S., Sahu, S., “Densified Silica Fume: Particle Sizes and Dispersion in Concrete,” Journal of Materials and structures, Vol. 39, pp. 849-859, 2006.
[9]  Trewyn, B. G., Giri, S., Slowing, I. I. and  Lin, V. S.-Y., “Mesoporous Silica Nanoparticle Based Controlled Release, Drug Delivery, and Biosensor Systems,” Journal of Chemical communications, No. 31, pp. 3236-3245, 2007.
[10] Imam, A., Kumar, V. and  Srivastava, V., “Review Study Towards Effect of Silica Fume on the Fresh and Hardened Properties of Concrete,” Journal of Advances in concrete construction, Vol. 6, No. 2, pp. 145, 2018.
[11] Kyzas, G. Z. and  Mitropoulos, A. C., “Introductory Chapter: Nanomaterials in the 2020s“   In Novel Nanomaterials-Synthesis and Applications, IntechOpen, 2018.
[12] Malhotra, V. M., “Condensed Silica Fume in Concrete,”  CRC Press, 2018.
[13] Majeed, A. H., “Enforcement of Epoxy with Silica Fume and Carbon Fiber,” Tikrit Journal of Engineering Sciences, Vol. 25, No. 1, pp. 74-77, 2018.
[14] Wittek, T., and T, Tanimoto., “Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres,” Journal of Express Polym Lett, Vol. 2, No. 11, pp. 810-822,  2008.
[15] Ravishankar, K. and  Kulkarni, S. M, “Synthesis and Comparison of Mechanical Behavior of Fly Ash-Epoxy and Silica Fumes-Epoxy Composite,”  In IOP Conference Series: Materials Science and Engineering,  Vol. 225, No. 1, p. 012299, 2017.
[16] Azizi, H. and  Eslami-Farsani, R., “Study of Mechanical Properties of Basalt Fibers/Epoxy Composites Containing Silane-Modified Nanozirconia,” Journal of Industrial Textiles,Vol. 51, No. 4, pp.  649-663, 2021.
[17] Kazemi‐Khasragh, E., Bahari‐Sambran, F., Siadati, S. M. H., Eslami‐Farsani, R. and  Arbab Chirani, S., “The Effects of Surface‐Modified Graphene Nanoplatelets on the Sliding Wear Properties of Basalt Fibers‐Reinforced Epoxy Composites,” Journal of Applied Polymer Science, Vol. 136, No. 39, pp. 47986, 2019.
[18] Abdi, A., Eslami-Farsani, R., Khosravi, H., “Evaluating the Mechanical Behavior of Basalt Fibers/Epoxy Composites Containing Surface-Modified Caco 3 Nanoparticles,” Journal of Fibers and Polymers, Vol. 19, pp. 635-640, 2018.
[19] Khosravi, H. and  Eslami-Farsani, R., “Enhanced Mechanical Properties of Unidirectional Basalt Fiber/Epoxy Composites Using Silane-Modified Na+-Montmorillonite Nanoclay,” Journal of Polymer testing, Vol. 55, pp. 135-142, 2016.
[20] Eslami Farsani, R., Ebrahim Nejad Khaljiri, H., Khorsand, H., Abbas Banaee, K., “Hybridization Effect of Fibers Reinforcement on Tensile Properties of Epoxy Composites,” Journal of Science and Technology of Composites, Vol. 1, No. 2, pp. 21-28, 2015.
[21] Abdollahi Azghan, M., Fallahnejad, M., Zamani, A., Eslami-Farsani, R., “Investigation the Flexural Behavior of Fiber Metal Laminates Containing Glass and Kevlar Fibers Subjected to Thermal Cycling,” Journal of Science and Technology of Composites, Vol. 7, No. 3, pp. 981-988, 2020.
[22] Bakar, R. A., Yahya, R. and  Gan, S. N., “Production of High Purity Amorphous Silica from Rice Husk,” Journal of Procedia chemistry,Vol. 19, pp. 189-195, 2016.
[23] Mokhothu, T. H., Luyt, A. S. and  Messori, M., “Preparation and Characterization of Epdm/Silica Composites Prepared through Non-Hydrolytic Sol-Gel Method in the Absence and Presence of a Coupling Agent,” Journal of Express Polymer Letters, Vol. 8, pp. 809-822, 2014.
[24] Lee, S. Y., Kim, J. S., Lim, S. H., Jang, S. H., Kim, D. H., Park, N.-H., Jung, J. W. and  Choi, J., “The Investigation of the Silica-Reinforced Rubber Polymers with the Methoxy Type Silane Coupling Agents,” Journal of Polymers,Vol. 12, No. 12, pp. 3058, 2020.
[25] Ismail, H., Nordin, R., “Effect of Epoxidized Natural Rubber (Enr) and Ethylene-Co-Acrylic Acid Copolymer on Properties of Silica-Filled Natural Rubber/Recycle Rubber Powder Blends,” Journal of Polymer-Plastics Technology and Engineering, Vol. 43, No. 2, pp. 285-300, 2004.
[26] Öztürk, B., Gedikli, H. and  Kılıçarslan, Y. S., “Erosive Wear Characteristics of E‐Glass Fiber Reinforced Silica Fume and Zinc Oxide‐Filled Epoxy Resin Composites,” Journal of  Polymer Composites, Vol. 41, No. 1, pp. 326-337, 2020.
[27] Azizi, H., Eslami-Farsani, R., “The Effect of Modified Zirconia Nanoparticles on the Mechanical Response of Basalt Fibers-Epoxy Composite under Tensile Loading,” In Persian, Journal of Science and Technology of Composites, Vol. 7, No. 2, pp. 891-896, 2020.
[28] Zulfli, M. and  Chow, W., “Mechanical and Thermal Behaviours of Glass Fiber Rinforced Epoxy Hybrid Composites Containing Organo-Montmorillonite Clay,” Malaysian Polymer Journal, Vol. 7, No. 1, pp. 8-15, 2012.
[29] Zulfli, N. H. M. and  Shyang, C. W., “Flexural and Morphological Properties of Epoxy/Glass Fibre/Silane-Treated Organomontmorillonite Composites,” J Phys Sci, Vol. 21, pp. 41-50, 2010.
[30] Chen, C., Wang, H., Xue, Y., Xue, Z., Liu, H., Xie, X., Mai, Y.-W., “Structure, Rheological, Thermal Conductive and Electrical Insulating Properties of High-Performance Hybrid Epoxy/Nanosilica/Agnws Nanocomposites,” Composites Science and Technology, Vol. 128, pp. 207-214, 2016.
[31] Wang, Y., Wang, Y., Wan, B., Han, B., Cai, G., Chang, R., “Strain and Damage Self-Sensing of Basalt Fiber Reinforced Polymer Laminates Fabricated with Carbon Nanofibers/Epoxy Composites under Tension,” Composites Part A: Applied Science and Manufacturing, Vol. 113, pp. 40-52, 2018.
[32] Rostamiyan, Y., Rezaei, M., “The Effect of Nano Zirconium Dioxide and Drilling on the Buckling Strength of Epoxy Based Nanocomposites,” Journal of  Materials Chemistry and Physics,Vol. 212, pp. 523-532, 2018.
[33] Yadhav, B. L., Govindaraju, H., Kiran, M. and  Suresha, B., “Three-Point Bending and Impact Behaviour of Carbon/Epoxy Composites Modified with Titanium Dioxide Nanoparticles,” Journal of  Materials Today: Proceedings,Vol. 43, pp. 1755-1761, 2021.
[34] Alsaadi, M., Bulut, M., Erkliğ, A. and  Jabbar, A., “Nano-Silica Inclusion Effects on Mechanical and Dynamic Behavior of Fiber Reinforced Carbon/Kevlar with Epoxy Resin Hybrid Composites,” Journal of  Composites Part B: Engineering, Vol. 152, pp. 169-179, 2018.