نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه اصفهان، اصفهان .

2 دانشیار، مهندسی مکانیک، دانشگاه اصفهان، اصفهان.

3 استادیار، مهندسی مکانیک، دانشگاه اصفهان، اصفهان.

چکیده

با توسعه و گسترش چاپ سه‌بعدی و ارتقاء به چاپ چهاربعدی، این امکان برای سازه‌های چاپ سه‌بعدی معمول فراهم شده است که در طول زمان با اعمال یک یا چند محرک به‌طور هم‌زمان آن‌ها را به ساختاری پویا تبدیل کنند. چاپ چهاربعدی قادر است یک هندسه ساده را به یک هندسه پیچیده تبدیل کند بدون اینکه نیازی به چاپ هندسه پیچیده از ابتدا باشد. همچنین چاپ چهاربعدی هزینه‌های تولید را کاهش، مواد کمتری را هدر و سرعت تولید را افزایش می‌دهد و ویژگی‌هایی مانند خود مونتاژی، خودسازگاری و خود ترمیمی را به ویژگی‌های مرتبط با سازه‌های چاپ سه‌بعدی اضافه می‌کند. در این مطالعه، ابتدا انواع مواد هوشمند و سازوکار‌های فعال‌سازی مورد استفاده در چاپ چهاربعدی مورد بررسی قرار می‌گیرد. سپس با تمرکز بر پلیمر‌ها و کامپوزیت‌های پلیمری، خواص و ویژگی‌های چاپ چهاربعدی تشریح می‌شود. در ادامه انواع روش‌های ساخت افزودنی مورد استفاده در چاپ چهاربعدی پلیمرها شرح داده می‌شود و در یک بخش جداگانه، تأثیر پارامترهای فرآیندی چاپ با استفاده از یک چاپگر FDM بر پاسخ مواد مورد استفاده به محرک اعمال شده مورد بحث قرار می‌گیرد. علاوه بر این، گسترش چاپ چهاربعدی در صنایع مختلف مانند پزشکی، هوافضا، حسگرها، رباتیک و سایر زمینه‌های کاربردی دیگر که چاپ چهاربعدی در آن‌ها وارد شده مورد بحث قرار گرفت و در پایان این پژوهش، چالش‌های موجود و فرصت‌های آتی توضیح داده شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A review on 4D printing of polymers and polymer composites

نویسندگان [English]

  • Aref Ansaripour 1
  • Mohammad Heidari-Rarani 2
  • Rasoul Mahshid 3

1 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

2 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

3 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

چکیده [English]

With the development and expansion of 3D printing and upgrading to 4D printing, it became possible for static 3D printed structures to turn them into a dynamic structure over time by applying one or more stimuli simultaneously. 4D printing was able to transform a simple geometry into a complex geometry without the need for printing the entire geometry from the beginning. Also, 4D printing reduced production costs, wasted fewer materials, increased production speed, and added features such as self-assembly, self-compatibility, and self-healing to the features related to 3D printed structures. In this study, first, different types of smart materials (such as shape memory polymers, shape memory alloys, hydrogels, etc.) and activation mechanisms (such as water, heat, pH, etc.) used in 4D printing were evaluated. Then, focusing on polymers and polymer composites, the properties and characteristics of 4D printing were described. In the following, the types of 3D printing methods utilized in the 4D printing of polymers were explained, and in a separate section, the effect of the printing process parameters using an FDM printer on the response of the materials used to the applied stimulus is discussed. Furthermore, the expansion of 4D printing in various industries such as medicine, aerospace, sensors, robotics, and other fields of application in which 4D printing entered was discussed and at the end of this study, the existing challenges and future opportunities were profoundly discussed.

کلیدواژه‌ها [English]

  • 4D printing
  • Shape memory polymers
  • Composites
  • Stimulus
  • Fused deposition modeling (FDM)
[1]  Jiang, J., “A novel fabrication strategy for additive manufacturing processes,” J. Clean. Prod., Vol. 272, p. 122916, 2020.
[2]  Culmone, C., Smit, G. and Breedveld, P., “Additive manufacturing of medical instruments: A state-of-the-art review,” Addit. Manuf., Vol. 27, pp. 461–473, 2019.
[3]  Blakey-Milner B., et al., “Metal additive manufacturing in aerospace: A review,” Mater. Des., Vol. 209, p. 110008, 2021.
[4]  Charles, A., Hofer, A., Elkaseer, A. and Scholz, S. G., “Additive Manufacturing in the Automotive Industry and the Potential for Driving the Green and Electric Transition,” in Proceedings of the International Conference on Sustainable Design and Manufacturing, pp. 339–346, Sep. 2022.
[5]  Shahbazi, A. and Zeinedini, A., “Impact response of E-glass/epoxy composite bi-directional corrugated core sandwich panels”, Polym. Polym. Compos., Vol. 29, No 9, pp. 1563–1574, 2020.
[6]  Noorani, R., “3D printing: technology, applications, and selection, ” 1st Editio. Boca Raton, CRC Press Taylor & Francis Group, Los Angeles, pp. 1-269, 2017.
[7]  Upcraft, S. and Fletcher, R., “The rapid prototyping technologies,” Assem. Autom., Vol. 23, No. 4, pp. 318–330, 2003.
[8]  Ahmed, A., Arya, S., Gupta, V., Furukawa, H. and Khosla, A., “4D printing: Fundamentals, materials, applications and challenges,” Polymer (Guildf)., Vol. 228, pp. 1358–1381, 2021.
[9]  Meshkizadeh, P., Hajideh, M. R., Farahani, M. R. and Heidari-Rarani, M., “Thermal signal reconstruction and employment of K clustering method for inspection of additive manufactured polymer parts,” In Persian, Nondestruct. Test. Technol., Vol. 2, No. 7, pp. 60–69, 2021.
[10] Vǎlean, C., Marşavina, L., Mǎrghitaşl, M., Linul, E., Razavi, J. and Berto, F., “Effect of manufacturing parameters on tensile properties of FDM printed specimens,” Procedia Struct. Integr., Vol. 26, No. 2, pp. 313–320, 2020.
[11] Aimar, A., Palermo, A. and Innocenti, B., “The Role of 3D Printing in Medical Applications: A State of the Art,” J. Healthc. Eng., Vol. 2019, p. 5340616, 2019.
[12] Wong, K. V. and Hernandez, A., “A Review of Additive Manufacturing,” ISRN Mech. Eng., Vol. 2012, pp. 1–10, 2012.
[13] Heidari-Rarani, M., “Residual stresses in additive manufacturing of polymers and polymer matrix composites,” in Residual Stresses in Composite Materials, 2nd Edition, pp. 421–436, 2021.
[14] Cotteleer, M., Holdowsky, J. and Mahto, M., “The 3D opportunity primer: The basics of additive manufacturing,” Deloitte University, Westlake, pp. 1–17, 2014.
[15] Chu H., et al., “4D printing: A review on recent progresses,” Micromachines, Vol. 11, No. 9, p. 796, 2020.
[16] Kianian, B., “Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report : Chapter title: The Middle East,” 21st ed., Wohlers Associates Inc., Lund,pp. 1-335, 2016.
[17] Mitchell, A., Lafont, U., Hołyńska, M. and Semprimoschnig, C., “Additive manufacturing — A review of 4D printing and future applications,” Addit. Manuf., Vol. 24, pp. 606–626, 2018.
[18] Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. and Hui, D., “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos. Part B Eng., Vol. 143, pp. 172–196, 2018.
[19] Wickramasinghe, S., Do, T. and Tran, P., “FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments,” Polymers, Vol. 12, No. 7. pp. 1–42, 2020.
[20] Kafle, A., Luis, E., Silwal, R., Pan, H. M., Shrestha, P. L. and Bastola, A. K., “3d/4d printing of polymers: Fused deposition modelling (fdm), selective laser sintering (sls), and stereolithography (sla),” Polymers, Vol. 13, No. 18. p. 3101, 2021.
[21] Salazar, A., Rico, A., Rodríguez, J., Segurado J., Escudero, Seltzer, R. and Martin De La Escalera Cutillas, F., “Fatigue crack growth of SLS polyamide 12: Effect of reinforcement and temperature,” Compos. Part B Eng., Vol. 59, pp. 285–292, 2014.
[22] Javaid, M. and Haleem, A., “4D printing applications in medical field: A brief review,” Clin. Epidemiol. Glob. Heal., Vol. 7, No. 3, pp. 317–321, 2019.
[23] Ntouanoglou, K., Stavropoulos, P. and Mourtzis, D., “4D printing prospects for the aerospace industry: A critical review,” Procedia Manuf., Vol. 18, pp. 120–129, 2018.
[24] Hann, S. Y., Cui, H., Nowicki, M. and Zhang, L. G., “4D printing soft robotics for biomedical applications,” Addit. Manuf., Vol. 36, p. 101567, 2020.
[25] Tang, Y., Dai, B., Su, B. and Shi, Y., “Recent Advances of 4D Printing Technologies Toward Soft Tactile Sensors,” Front. Mater., Vol. 8, p. 658046, 2021.
[26] Momeni, F., M.Mehdi Hassani.N, S., Liu, X. and Ni, J., “A review of 4D printing,” Mater. Des., Vol. 122, pp. 42–79, 2017.
[27] Precedence research, “4D Printing Market”, https://www.precedenceresearch.com/4d-printing-market, available in 1, June 2022.
[28] Precedence research, “3D Printing Market”, 2023. https://www.precedenceresearch.com/3d-printing-market, available in 1, March 2023.
[29] Xiao, X., Hu, J., Gui, X. and Qian, K., “Shape memory investigation of α-Keratin Fibers as Multi-Coupled stimuli of responsive Smart Materials,” Polymers, Vol. 9, No. 3. p. 87, 2017.
[30] Zheng, Q., Xu, C., Jiang, Z., Zhu, M., Chen, C. and Fu, F. “Smart Actuators Based on External Stimulus Response,” Front. Chem., Vol. 9, p. 650538, 2021.
[31] Zeng, X., et al., “Novel pH-Responsive Smart Fabric: From Switchable Wettability to Controllable On-Demand Oil/Water Separation,” ACS Sustain. Chem. Eng., Vol. 7, No. 1, pp. 368–376, 2019.
[32] Raza, A., Hayat, U., Rasheed, T., Bilal, M. and Iqbal, H. M. N., “‘smart’ materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review,” J. Mater. Res. Technol., Vol. 8, No. 1, pp. 1497–1509, 2019.
[33] Su, M. and Song, Y., “Printable Smart Materials and Devices: Strategies and Applications,” Chem. Rev., Vol. 122, No. 5, pp. 5144–5164, 2022.
[34] Sobczyk, M., Wiesenhütter, S., Noennig, J. R. and Wallmersperger, T., “Smart materials in architecture for actuator and sensor applications: A review,” J. Intell. Mater. Syst. Struct., Vol. 33, No. 3, pp. 379–399, 2022.
[35] Kumar, S., Singh, R., Batish, A. and Singh, T. P., “Additive manufacturing of smart materials exhibiting 4-D properties: A state of art review,” J. Thermoplast. Compos. Mater., Vol. 35, No. 9, pp. 1358–1381, 2022.
[36] Leng, J., Lu, H., Liu, Y., Huang, W. M. and Du, S., “Shape-memory polymers - A class of novel smart materials,” MRS Bull., Vol. 34, No. 11, pp. 848–855, 2009.
[37] Michaud, V., “Can shape memory alloy composites be smart?,” Scr. Mater., Vol. 50, No. 2, pp. 249–253, 2004.
[38] Waghulde, K. B. and Kumar, B., “Vibration analysis of cantilever smart structure by using piezoelectric smart material”, Int. J. Smart Sens. Intell. Syst., Vol 4, No 3, pp. 353–375, 2011.
[39] Peuzin, J. C., “Magnetostrictive Materials,” Encycl. Mater. Sci. Technol., Vol. 18, No. 4, pp. 5101–5107, 2001.
[40] Liang, R., Wang, L., Yu, H., Khan, A., Ul Amin, B. and Khan, R. U., “Molecular design, synthesis and biomedical applications of stimuli-responsive shape memory hydrogels”, Eur. Polym. J., Vol 114, pp. 380–396, 2019.
[41] Yarali, E., Baniassadi, M. and Baghani, M., “Numerical homogenization of coiled carbon nanotube reinforced shape memory polymer nanocomposites,” Smart Mater. Struct., Vol. 28, No. 3, p. 035026, 2019.
[42] Jebellat, E., Baniassadi, M., Moshki, A., Wang, K. and Baghani, M., “Numerical investigation of smart auxetic three-dimensional meta-structures based on shape memory polymers via topology optimization,” J. Intell. Mater. Syst. Struct., Vol. 31, No. 15, pp. 1838–1852, 2020.
[43] Lendlein, A. and Kelch, S., “Shape-memory polymers,” Angew. Chemie - Int. Ed., Vol. 41, No. 12, pp. 2034–2057, 2002.
[44] Wan, X., He, Y., Liu, Y. and Leng, J., “4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties,” Addit. Manuf., Vol. 53, p. 102689, 2022.
[45] Liu, Y., et al., “Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament”, Compos. Sci. Technol., Vol 181, pp. 107692, 2019.
[46] Miao, J.-T., et al., “Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing”, ACS Appl. Mater. Interfaces, Vol 11, No 43, pp. 40642–40651, 2019.
[47] Deng, Y., Zhang, F., Liu, Y., Zhang, S., Yuan, H. and Leng, J., “4D Printed Shape Memory Polyurethane-Based Composite for Bionic Cartilage Scaffolds”, ACS Appl. Polym. Mater., Vol 5, No 2, pp. 1283–1292, 2023.
[48] Aberoumand, M., et al., “4D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performance”, Macromol. Mater. Eng., vol n/a, no n/a, pp. 2200677, 2023.
[49] Liu, C., Qin, H. and Mather, P. T., “Review of progress in shape-memory polymers,” J. Mater. Chem., Vol. 17, No. 16, pp. 1543–1558, 2007.
[50] Gall, K., Kreiner, P., Turner, D. and Hulse, M., “Shape-memory polymers for microelectromechanical systems,” J. Microelectromechanical Syst., Vol. 13, No. 3, pp. 472–483, 2004.
[51] Patil, D. and Song, G., “A review of shape memory material’s applications in the offshore oil and gas industry,” Smart Mater. Struct., Vol. 26, No. 9, pp. 58–72, 2017.
[52] Zhang, J., Wang, C. and Zhang, L., “Deployment of SMP Miura-ori sheet and its application: Aerodynamic drag and RCS reduction,” Chinese J. Aeronaut., Vol. 35, No. 8, pp. 121–131, 2022.
[53] Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D. and Magdassi, S., “3D Printing of Shape Memory Polymers for Flexible Electronic Devices,” Adv. Mater., Vol. 28, No. 22, pp. 4449–4454, 2016.
[54] Mohd Jani, J., Leary, M., Subic, A. and Gibson, M. A., “A review of shape memory alloy research, applications and opportunities,” Mater. Des., Vol. 56, pp. 1078–1113, 2014.
[55] Chopra, I. and Sirohi, J., “Shape Memory Alloys (SMAs),” in Smart Structures Theory, 1st ed., Cambridge University Press, Cambridge, pp. 194–304, 2013.
[56] Janke, L., Czaderski, C., Motavalli, M. and Ruth, J., “Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas,” Mater. Struct., Vol. 38, No. 5, pp. 578–592, 2005.
[57] Chaudhari, R., Vora, J. J. and Parikh, D. M., “A Review on Applications of Nitinol Shape Memory Alloy BT - Recent Advances in Mechanical Infrastructure,” in Proceedings of Recent Advances in Mechanical Infrastructure, Springer, Singapore, pp. 123–132, 2021.
[58] Schwartz, M., “Shape Memory Alloys, Applications,” in Smart materials—Encyclopedias, 1st ed., John Wiley & Sons Inc., New York, pp. 921-936, 2002.
[59] Uchino, K., “Chapter 1 - The Development of Piezoelectric Materials and the New Perspective”, in Woodhead Publishing in Materials, K. B. T.-A. P. M. (Second E. Uchino, Red, Woodhead Publishing, pp. 1–92, 2017.
[60] Aksel, E. and Jones, J. L., “Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators”, Sensors, Vol 10, No 3. pp. 1935–1954, 2010.
[61] Olabi, A. G., and Grunwald, A., “Design and application of magnetostrictive materials”, Mater. Des., Vol 29, No 2, pp. 469–483, 2008.
[62] Raviv, D., et al., “Active printed materials for complex self-evolving deformations”, Sci. Rep., Vol 4, No 1, pp. 1–8, 2014.
[63] Ahmed, E. M., “Hydrogel: Preparation, characterization, and applications: A review,” J. Adv. Res., Vol. 6, No. 2, pp. 105–121, 2015.
[64] Fan, K., et al., “Water-responsive shape memory hybrid: Design concept and demonstration,” Express Polym. Lett., Vol. 5, No. 5, pp. 409–416, 2011.
[65] Mao, Y., et al., “3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials,” Sci. Rep., Vol. 6, No. 1, p. 24761, 2016.
[66] Grubbs, R. B. and Sun, Z., “Shape-changing polymer assemblies,” Chem. Soc. Rev., Vol. 42, No. 17, pp. 7436–7445, 2013.
[67] Beloshenko, V. A., Varyukhin, V. N. and Voznyak, Y. V., “The shape memory effect in polymers,” Usp. Khim., Vol. 74, No. 3, pp. 285–306, 2005.
[68] Lin, C., Liu, L., Liu, Y. and Leng, J., “4D printing of shape memory polybutylene succinate/polylactic acid (PBS/PLA) and its potential applications,” Compos. Struct., Vol. 279, p. 114729, 2022.
[69] Yu, Y., et al., “Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing,” CAD Comput. Aided Des., Vol. 122, p. 102817, 2020.
[70] Koetting, M. C., Peters, J. T., Steichen, S. D. and Peppas, N. A., “Stimulus-responsive hydrogels: Theory, modern advances, and applications,” Mater. Sci. Eng. R Reports, Vol. 93, pp. 1–49, 2015.
[71] Nadgorny, M., Xiao, Z., Chen, C. and Connal, L. A., “Three-Dimensional Printing of pH-Responsive and Functional Polymers on an Affordable Desktop Printer,” ACS Appl. Mater. Interfaces, Vol. 8, No. 42, pp. 28946–28954, 2016.
[72] Wu, C. Y., Chen, J. R. and Su, C. K., “4D-printed pH sensing claw,” Anal. Chim. Acta, Vol. 1204, p. 339733, 2022.
[73] Liu, Q. S., Roux, B. and Velarde, M. G., “Thermocapillary convection in two-layer systems,” Int. J. Heat Mass Transf., Vol. 41, No. 11, pp. 1499–1511, 1998.
[74] Breger, J. C., et al., “Self-folding thermo-magnetically responsive soft microgrippers,” ACS Appl. Mater. Interfaces, Vol. 7, No. 5, pp. 3398–3405, 2015.
[75] Yu, X., Zhou, S., Zheng, X., Guo, T., Xiao, Y. and Song, B., “A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity,” Nanotechnology, Vol. 20, No. 23, p. 235702, 2009.
[76] Zhu, P., Yang, W., Wang, R., Gao, S., Li, B. and Li, Q., “4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus,” ACS Appl. Mater. Interfaces, Vol. 10, No. 42, pp. 36435–36442, 2018.
[77] Zhou, Y., et al., “From 3D to 4D printing: approaches and typical applications,” J. Mech. Sci. Technol., Vol. 29, No. 10, pp. 4281–4288, 2015.
[78] Liu, X., et al., “Capillary-Force-Driven Self-Assembly of 4D-Printed Microstructures,” Adv. Mater., Vol. 33, No. 22, p. 2100332, 2021.
[79] Grassi, G., Sparrman, B. E. and Tibbits, S., “Material agency and 4d printing,” in Material Balance: A Design Equation, 1st ed., Springer International Publishing, Milan, pp. 53–63, 2021.
[80] Kuang, X., Chen, K., Dunn, C. K., Wu, J., Li, V. C. F. and J. Qi, H., “3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing,” ACS Appl. Mater. Interfaces, Vol. 10, No. 8, pp. 7381–7388, 2018.
[81] Tibbits, S., “4D Printing: Multi-Material Shape Change,” Archit. Des., Vol. 81, No. 1, pp. 116–121, 2014.
[82] Zhao, W., Li, N., Liu, L., Leng, J. and Liu, Y., “Origami derived self-assembly stents fabricated via 4D printing,” Compos. Struct., Vol. 293, p. 115669, 2022.
[83] Van Manen, T., Janbaz, S., Jansen, K. M. B. and Zadpoor, A. A., “4D printing of reconfigurable metamaterials and devices,” Commun. Mater., Vol. 2, No. 1, pp. 1–8, 2021.
[84] Zeng, S., Gao, Y., Tan, J. and Wei, Z., “Self-Assembly by 4D Printing: Design and Fabrication of Sequential Self-Folding,” in Proceedings of ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, p. V001T03A005, 2022.
[85] Zhao, W., Yue, C., Liu, L., Liu, Y. and Leng, J., “Research progress of shape memory polymer and 4D printing in biomedical application,” Adv. Healthc. Mater., Vol. n/a, No. n/a, p. 2201975, 2022.
[86] Invernizzi, M., Turri, S., Levi, M. and Suriano, R., “4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers,” Eur. Polym. J., Vol. 101, pp. 169–176, 2018.
[87] Bauer, S., Bauer-Gogonea, S., Graz, I. Kaltenbrunner, M., Keplinger, C. and Schwödiauer, R., “25th anniversary article: A soft future: From robots and sensor skin to energy harvesters,” Adv. Mater., Vol. 26, No. 1, pp. 149–162, 2014.
[88] Rafiee, M., Farahani, R. D. and Therriault, D., “Multi-Material 3D and 4D Printing: A Survey,” Adv. Sci., Vol. 7, No. 12, p. 1902307, 2020.
[89] Hager, M. D., Bode, S., Weber, C. and Schubert, U. S., “Shape memory polymers: Past, present and future developments,” Prog. Polym. Sci., Vol. 49–50, pp. 3–33, 2015.
[90] Zhou, J. and Sheiko, S. S., “Reversible shape-shifting in polymeric materials,” J. Polym. Sci. Part B Polym. Phys., Vol. 54, No. 14, pp. 1365–1380, 2016.
[91] Niazy, D., Elsabbagh, A. and Ismail, M. R., “Mono–material 4d printing of digital shape–memory components,” Polymers, Vol. 13, No. 21. 2021.
[92] Morgan, N. B., “Medical shape memory alloy applications - The market and its products,” Mater. Sci. Eng. A, Vol. 378, No. 1-2 SPEC. ISS., pp. 16–23, 2004.
[93] Ly, S. T. and Kim, J. Y., “4D printing – fused deposition modeling printing with thermal-responsive shape memory polymers,” Int. J. Precis. Eng. Manuf. - Green Technol., Vol. 4, No. 3, pp. 267–272, 2017.
[94] Wu, H., et al., “Selective Laser Sintering-Based 4D Printing of Magnetism-Responsive Grippers,” ACS Appl. Mater. Interfaces, Vol. 13, No. 11, pp. 12679–12688, 2021.
[95] Andreu, A., et al., “4D printing materials for vat photopolymerization,” Addit. Manuf., Vol. 44, p. 102024, 2021.
[96] Joshi, S., et al., “4D printing of materials for the future: Opportunities and challenges,” Appl. Mater. Today, Vol. 18, p. 100490, 2020.
[97] Akbari, S., Zhang, Y. F., Wang, D. and Ge, Q., “4D Printing and Its Biomedical Applications,” in 3D and 4D Printing in Biomedical Applications, 1st ed., Brighton, pp. 343–372, 2018.
[98] Singh, S., Singh, G., Prakash, C. and Ramakrishna, S., “Current status and future directions of fused filament fabrication,” J. Manuf. Process., Vol. 55, pp. 288–306, 2020.
[99] Yang, Y., Chen, Y., Wei, Y. and Li, Y., “3D printing of shape memory polymer for functional part fabrication,” Int. J. Adv. Manuf. Technol., Vol. 84, No. 9–12, pp. 2079–2095, 2016.
[100]       Cano-Vicent, A., et al., “Fused deposition modelling: Current status, methodology, applications and future prospects,” Addit. Manuf., Vol. 47, p. 102378, 2021.
[101]       Heidari-Rarani, M., Rafiee-Afarani, M. and Zahedi, A. M., “Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites,” Compos. Part B Eng., Vol. 175, p. 107147, 2019.
[102]       Heidari-Rarani, M., Ezati, N., Sadeghi, P. and Badrossamay, M. R., “Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method,” J. Thermoplast. Compos. Mater., Vol. 35, No. 12, pp. 2435–2452, 2022.
[103]       Shahkarami, M. and Zeinedini, A., “Flexural Properties of 3D-printed hierarchical-sinusoidal corrugated core sandwich panels with natural fiber reinforced skins”, Polym. Polym. Compos., Vol 30, p. 09673911221101299, 2022.
[104]       Barletta, M., Gisario, A. and Mehrpouya, M., “4D printing of shape memory polylactic acid (PLA) components: Investigating the role of the operational parameters in fused deposition modelling (FDM),” J. Manuf. Process., Vol. 61, pp. 473–480, 2021.
[105]       Bodaghi, M., Serjouei, A., Zolfagharian, A., Fotouhi, M., Rahman, H. and Durand, D., “Reversible energy absorbing meta-sandwiches by FDM 4D printing,” Int. J. Mech. Sci., Vol. 173, p. 105451, 2020.
[106]       Cheng, C. Y., et al., “4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices,” Chem. Eng. J., Vol. 396, p. 125242, 2020.
[107]       Tahir, M., Rahimizadeh, A., Kalman, J., Fayazbakhsh, K. and Lessard, L., “Experimental and analytical investigation of 3D printed specimens reinforced by different forms of recyclates from wind turbine waste,” Polym. Compos., Vol. 42, No. 9, pp. 4533–4548, 2021.
[108]       Kruth, J. P., Wang, X., Laoui, T. and Froyen, L., “Lasers and materials in selective laser sintering,” Assem. Autom., Vol. 23, No. 4, pp. 357–371, 2003.
[109]       Khalid, M. Y., Arif, Z. U., Noroozi, R., Zolfagharian, A. and Bodaghi, M., “4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives,” J. Manuf. Process., Vol. 81, pp. 759–797, 2022.
[110]       Akbar, I., El Hadrouz, M., El Mansori, M. and Lagoudas, D., “Toward enabling manufacturing paradigm of 4D printing of shape memory materials: Open literature review,” Eur. Polym. J., Vol. 168, p. 111106, 2022.
[111]       Makvandi, P., et al., “Bioinspired microneedle patches: Biomimetic designs, fabrication, and biomedical applications,” Matter, Vol. 5, No. 2, pp. 390–429, 2022.
[112]       Fina, F., Goyanes, A., Gaisford, S. and Basit, A. W., “Selective laser sintering (SLS) 3D printing of medicines,” Int. J. Pharm., Vol. 529, No. 1–2, pp. 285–293, 2017.
[113]       Yang, D., et al., “3D/4D printed tunable electrical metamaterials with more sophisticated structures,” J. Mater. Chem. C, Vol. 9, No. 36, pp. 12010–12036, 2021.
[114]       Ouyang, H., Li, X., Lu, X. and Xia, H., “Selective Laser Sintering 4D Printing of Dynamic Cross-linked Polyurethane Containing Diels-Alder Bonds,” ACS Appl. Polym. Mater., Vol. 4, No. 5, pp. 4035–4046, 2022.
[115]       Ploszajski, A. R., Jackson, R., Ransley, M. and Miodownik, M., “4D Printing of Magnetically Functionalized Chainmail for Exoskeletal Biomedical Applications,” MRS Adv., Vol. 4, No. 23, pp. 1361–1366, 2019.
[116]       Al Rashid, A., Ahmed, W., Khalid, M. Y. and Koç, M., “Vat photopolymerization of polymers and polymer composites: Processes and applications,” Addit. Manuf., Vol. 47, p. 102279, 2021.
[117]       Davoudinejad, A., et al., “Additive manufacturing with vat polymerization method for precision polymer micro components production,” Procedia CIRP, Vol. 75, pp. 98–102, 2018.
[118]       Ng, W. L., et al., “Vat polymerization-based bioprinting - process, materials, applications and regulatory challenges,” Biofabrication, Vol. 12, No. 2, p. 22001, 2020.
[119]       Tang, T., Alfarhan, S., Jin, K. and Li, X., “4D Printing of Seed Capsule-Inspired Hygro-Responsive Structures via Liquid Crystal Templating-Assisted Vat Photopolymerization,” Adv. Funct. Mater., Vol. 33, No. 5, p. 2211602, 2023.
[120]       Fang, Z., Lu, R., Chen, J., Zhao, Q. and Wu, J., “Vat photopolymerization of tough glassy polymers with multiple shape memory performances,” Addit. Manuf., Vol. 59, p. 103171, 2022.
[121]       Xu, X., Robles-Martinez, P., Madla, C. M., Joubert, F., Goyanes, A., Basit, A. W. and Gaisford, S., “Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction,” Addit. Manuf., Vol. 33, p. 101071, 2020.
[122]       Sun, C., Fang, N., Wu, D. M. and Zhang, X., “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sensors Actuators, A Phys., Vol. 121, No. 1, pp. 113–120, 2005.
[123]       Pagac, M., et al., “A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3d printing,” Polymers, Vol. 13, No. 4, pp. 1–20, 2021.
[124]       Choong, Y. Y. C., Maleksaeedi, S., Eng, H., Wei, J. and Su, P. C., “4D printing of high performance shape memory polymer using stereolithography,” Mater. Des., Vol. 126, pp. 219–225, 2017.
[125]       Zhao, T., et al., “4D printing of shape memory polyurethane via stereolithography,” Eur. Polym. J., Vol. 101, pp. 120–126, 2018.
[126]       Miao, S., et al., “Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering,” Adv. Biosyst., Vol. 2, No. 9, p. 1800101, 2018.
[127]       Shahzad, A. and Lazoglu, I., “Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges,” Compos. Part B Eng., Vol. 225, p. 109249, 2021.
[128]       Lewis, J. A., Smay, J. E., Stuecker, J. and Cesarano, J., “Direct ink writing of three-dimensional ceramic structures,” J. Am. Ceram. Soc., Vol. 89, No. 12, pp. 3599–3609, 2006.
[129]       Aw, J. E., et al., “Self-Regulative Direct Ink Writing of Frontally Polymerizing Thermoset Polymers,” Adv. Mater. Technol., Vol. 7, No. 9, p. 2200230, 2022.
[130]       Mahshid, R., Isfahani, M. N., Heidari-Rarani, M. and Mirkhalaf, M., “Recent advances in development of additively manufactured thermosets and fiber reinforced thermosetting composites: Technologies, materials, and mechanical properties”, Compos. Part A Appl. Sci. Manuf., Vol 171, p. 107584, 2023.
[131]       Skylar-Scott, M. A., Gunasekaran, S. and Lewis, J. A., “Laser-assisted direct ink writing of planar and 3D metal architectures,” Proc. Natl. Acad. Sci. U. S. A., Vol. 113, No. 22, pp. 6137–6142, 2016.
[132]       Fu, K., et al., “Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries,” Adv. Mater., Vol. 28, No. 13, pp. 2587–2594, 2016.
[133]       Revelo, C. F. and Colorado, H. A., “3D printing of kaolinite clay ceramics using the Direct Ink Writing (DIW) technique,” Ceram. Int., Vol. 44, No. 5, pp. 5673–5682, 2018.
[134]       Xu, C., Quinn, B., Lebel, L. L., Therriault, D. and L’espérance, G., “Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports,” ACS Appl. Mater. Interfaces, Vol. 11, No. 8, pp. 8499–8506, 2019.
[135]       Lewis, J. A., “Direct ink writing of 3D functional materials,” Adv. Funct. Mater., Vol. 16, No. 17, pp. 2193–2204, 2006.
[136]       Lewis, J. A. and Gratson, G. M., “Direct writing in three dimensions,” Mater. Today, Vol. 7, No. 7, pp. 32–39, 2004.
[137]       Wan, X., Luo, L., Liu, Y. and Leng, J., “Direct Ink Writing Based 4D Printing of Materials and Their Applications,” Adv. Sci., Vol. 7, No. 16, p. 2001000, 2020.
[138]       Mu, Q., Dunn, C. K., Wang, L., Dunn, M. L., Qi, H. J. and Wang, T., “Thermal cure effects on electromechanical properties of conductive wires by direct ink write for 4D printing and soft machines,” Smart Mater. Struct., Vol. 26, No. 4, p. 45008, 2017.
[139]       Peng, X., et al., “4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing,” Adv. Mater., Vol. 34, No. 39, p. 2204890, 2022.
[140]       Weng, S., et al., “4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness,” ACS Appl. Mater. Interfaces, Vol. 13, No. 11, pp. 12797–12804, 2021.
[141]       Bodaghi, M., Damanpack, A. R. and Liao, W. H., “Adaptive metamaterials by functionally graded 4D printing,” Mater. Des., Vol. 135, pp. 26–36, 2017.
[142]       Bodaghi, M., Noroozi, R., Zolfagharian, A., Fotouhi, M. and Norouzi, S., “4D printing self-morphing structures,” Materials (Basel)., Vol. 12, No. 8, 2019.
[143]       Jamshidi, M., Salimi Nezhad, I., Golzar, M. and Behravesh, A. H., “Investigation of the Effect of 3D printing parameters on shape-shifting of flat sturctures to Three-Dimensional Shapes,” In Persian, J. Sci.  Technol. Compos., Vol. 7, No. 4, pp. 1271–1278, 2021.
[144]       Hosseinzadeh, M., Ghoreishi, M. and Narooei, K., “Investigation of the Effect of 3D Printing Parameters on the Bending Shape Recovery in 4D Printing Process,” In Persian, Modares Mech. Eng., Vol. 22, No. 9, pp. 567–577, 2022.
[145]       Rajkumar, A. R. and Shanmugam, K., “Additive manufacturing-enabled shape transformations via FFF 4D printing,” J. Mater. Res., Vol. 33, No. 24, pp. 4362–4376, 2018.
[146]       Aberoumand, M., et al., “A comprehensive experimental investigation on 4D printing of PET-G under bending,” J. Mater. Res. Technol., Vol. 18, pp. 2552–2569, 2022.
[147]       Tezerjani, S. M. D., Yazdi, M. S. and Hosseinzadeh, M. H., “The effect of 3D printing parameters on the shape memory properties of 4D printed polylactic acid circular disks: An experimental investigation and parameters optimization,” Mater. Today Commun., Vol. 33, p. 104262, 2022.
[148]       Wang, J., Wang, Z., Song, Z., Ren, L., Liu, Q. and Ren, L., “Programming Multistage Shape Memory and Variable Recovery Force with 4D Printing Parameters,” Adv. Mater. Technol., Vol. 4, No. 11, p. 1900535, 2019.
[149]       Van Manen, T., Janbaz, S. and Zadpoor, A. A., “Programming 2D/3D shape-shifting with hobbyist 3D printers,” Mater. Horizons, Vol. 4, No. 6, pp. 1064–1069, 2017.
[150]       Liu, T., Liu, L., Zeng, C., Liu, Y. and Leng, J., “4D printed anisotropic structures with tailored mechanical behaviors and shape memory effects,” Compos. Sci. Technol., Vol. 186, p. 107935, 2020.
[151]       Garcia, C. R., et al., “3D printing of anisotropic metamaterials,” Prog. Electromagn. Res. Lett., Vol. 34, No. PIERL12070311, pp. 75–82, 2012.
[152]       Alshebly, Y. S.,  et al., “Variable stiffness 4D printing,” in Smart Materials in Additive Manufacturing, volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications, Elsevier, pp. 407–433, 2022.
[153]       Nam, S. and Pei, E., “The influence of shape changing behaviors from 4D printing through material extrusion print patterns and infill densities,” Materials, Vol. 13, No. 17. p. 3754, 2020.
[154]       Goo, B., Hong, C. H. and Park, K., “4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts,” Mater. Des., Vol. 188, p. 108485, 2020.
[155]       Wu, W., et al., “Metallic 4D Printing of Laser Stimulation,” Adv. Sci., Vol. n/a, No. n/a, p. 2206486, 2023.
[156]       He, W., et al., “A Biocompatible 4D Printing Shape Memory Polymer as Emerging Strategy for Fabrication of Deployable Medical Devices,” Macromol. Rapid Commun., Vol. 44, No. 2, p. 2200553, 2023.
[157]       Raina, A., Haq, M. I. U., Javaid, M., Rab, S. and Haleem, A., “4D Printing for Automotive Industry Applications,” J. Inst. Eng. Ser. D, Vol. 102, No. 2, pp. 521–529, 2021.
[158]       Jiang, Y., et al., “Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing,” Adv. Mater. Technol., Vol. 8, No. 2, p. 2200492, 2023.
[159]       Wang, W., Liu, Y. and Leng, J., “Recent developments in shape memory polymer nanocomposites: Actuation methods and mechanisms,” Coord. Chem. Rev., Vol. 320–321, pp. 38–52, 2016.
[160]       Serrano, M. C. and Ameer, G. A., “Recent insights into the biomedical applications of shape-memory polymers,” Macromol. Biosci., Vol. 12, No. 9, pp. 1156–1171, 2012.
[161]       Shakibania, S., Ghazanfari, L., Raeeszadeh-Sarmazdeh, M. and Khakbiz, M., “Medical application of biomimetic 4D printing,” Drug Dev. Ind. Pharm., Vol. 47, No. 4, pp. 521–534, 2021.
[162]       Zhou, Y., et al., “4D Printing of Shape Memory Vascular Stent Based on βCD-g-Polycaprolactone,” Macromol. Rapid Commun., Vol. 42, No. 14, p. 2100176, 2021.
[163]       Lin, C., Zhang, L. J., Liu, Y. J., Liu, L. W. and Leng, J. S., “4D printing of personalized shape memory polymer vascular stents with negative Poisson’s ratio structure: A preliminary study,” Sci. China Technol. Sci., Vol. 63, No. 4, pp. 578–588, 2020.
[164]       Small, W., et al., “Shape memory polymer stent with expandable foam: A new concept for endovascular embolization of fusiform aneurysms,” IEEE Trans. Biomed. Eng., Vol. 54, No. 6, pp. 1157–1160, 2007.
[165]       Yakacki, C. M., Shandas, R., Lanning, C., Rech, B., Eckstein, A. and Gall, K., “Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications,” Biomaterials, Vol. 28, No. 14, pp. 2255–2263, 2007.
[166]       Ge, Q., Sakhaei, A. H., Lee, H., Dunn, C. K., Fang, N. X. and Dunn, M. L., “Multimaterial 4D Printing with Tailorable Shape Memory Polymers,” Sci. Rep., Vol. 6, No. 1, p. 31110, 2016.
[167]       Zhang, F., Wen, N., Wang, L., Bai, Y. and Leng, J., “Design of 4D printed shape-changing tracheal stent and remote controlling actuation,” Int. J. Smart Nano Mater., Vol. 12, No. 4, pp. 375–389, 2021.
[168]       Kumari, G., et al., “A voyage from 3D to 4D printing in nanomedicine and healthcare: Part II,” Nanomedicine, Vol. 17, No. 4, pp. 255–270, 2022.
[169]       Osouli-Bostanabad, K., et al., “Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine,” ACS Biomater. Sci. Eng., Vol. 8, No. 7, pp. 2764–2797, 2022.
[170]       Ding, H., Zhang, X., Liu, Y. and Ramakrishna, S., “Review of mechanisms and deformation behaviors in 4D printing,” Int. J. Adv. Manuf. Technol., Vol. 105, No. 11, pp. 4633–4649, 2019.
[171]       Miao, S., et al., “4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate,” Sci. Rep., Vol. 6, No. 1, p. 27226, 2016.
[172]       Agency, E. S., “Printing bricks from moondust using the Sun's heat,” https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Printing_bricks_from_moondust_using_the_Sun_s_heat, available in 5, March 2017.
[173]       Ishizawa, J., “Research on Application of Shape Memory Polymers to Space Inflatable Systems,” Proceeding 7th Int. Symp. Artif. Intell. Robot. Autom. Sp., Vol. 400, pp. 1–4, 2003.
[174]       Hinkle, J., Lin, J. H. K. and Kling, D., “Design and materials study on secondary structures in deployable planetary and space habitats,” in Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t, Denver, pp. 2011–2024, 2011.
[175]       Carlota, V., “How will 4D printing disrupt our current manufacturing techniques?,” https://www.3dnatives.com/en/4d-printing-disrupting-current-manufacturing-techniques-230920194/#! (accessed Sep. 23, 2019)., available in 23, September 2019.
[176]       Baba, Z. U., Shafi, W. K., Haq, M. I. U. and Raina, A., “Towards sustainable automobiles-advancements and challenges,” Prog. Ind. Ecol., Vol. 13, No. 4, pp. 315–331, 2019.
[177]       Xavier, M. S., et al., “Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications,” IEEE Access, Vol. 10, pp. 59442–59485, 2022.
[178]       Adam, G., Benouhiba, A., Rabenorosoa, K., Clévy, C. and J. Cappelleri, D., “4D Printing: Enabling Technology for Microrobotics Applications,” Adv. Intell. Syst., Vol. 3, No. 5, p. 2000216, 2021.
[179]       Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D. and Magdassi, S., “3D Printing of Shape Memory Polymers for Flexible Electronic Devices,” Adv. Mater., Vol. 28, No. 22, pp. 4449–4454, 2016.
[180]       Phuhongsung, P., Zhang, M. and Bhandari, B., “4D printing of products based on soy protein isolate via microwave heating for flavor development,” Food Res. Int., Vol. 137, p. 109605, 2020.
[181]       Oladapo, B. I., Adebiyi, A. V. and Ifeoluwa Elemure, E., “Microstructural 4D printing investigation of ultra-sonication biocomposite polymer,” J. King Saud Univ. - Eng. Sci., Vol. 33, No. 1, pp. 54–60, 2021.