نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار،مهندسیمکانیک،واحد شیراز،دانشگاه آزاد اسلامی،شیراز.

2 دانشآموختهکارشناسیارشد،مهندسیمکانیک،واحد شیراز،دانشگاه آزاد اسلامی،شیراز.

3 استادیار،مهندسیمکانیک،واحد مرودشت، دانشگاه آزاد اسلامی،مرودشت.

4 دانشآموخته کارشناسی ارشد،مهندسی مکانیک، واحد شیراز،دانشگاه آزاد اسلامی،شیراز.

چکیده

فرآیند اصطکاکی اغتشاشی روشی برای پردازش حالت جامد آلیاژهای فلزی می‌باشد. جهت انجام فرآیند از ماشین فرز FP4M و ابزار دوار غیرمصرفی برای ایجاد حرارت لازم و اختلاط بیشتر مس با پودر دی-اکسید تیتا‌نیم استفاده گردید. ورق پایه از جنس مس با خلوص 9/99‌% است. حرارت ایجاد شده در طی فرآیند بر روی قطعه مسی و نانو ذرات دی‌اکسید تیتانیوم موجود در شیار، منجر به تغییرات متالوژیکی در ریزساختار فلز پایه شده و منجر به تغییر اندازه دانه‌ها و شکل آنها می‌گردد. نمونه‌ها تحت عملیات متالوگرافی و بررسی‌های ریزساختی توسط میکروسکوپ نوری، XRD، آزمون‌های خوردگی و سایش قرار داده شدند. نتایج نشان می‌دهد که در ناحیه HAZ نزدیک به فرآیند، دانه‌ها بصورت ساختار ریز‌دانه محلول جامد مس، حاوی نواحی دوقلویی با میانگین اندازه دانه 14 بوده اما در ناحیه فرآیند، دانه‌ها بصورت ساختار اعوجاج و اغتشاش یافته محلول جامد مس تشکیل گردیدند. میانگین ضریب اصطکاک در نمودار سایش مس پایه، کمتر از یک است. با انطباق نمودار خوردگی نمونه مس پایه و نمونه مس اصطکاکی اغتشاشی، مشخص گردید که نمونه مس پایه از مقاومت به خوردگی بهتری برخوردار است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Tribological Properties of Nano-Composite Copper / Titanium Dioxide Alloy Produced Using Friction-Stir Process

نویسندگان [English]

  • Ahmad Afsari 1
  • Alireza Rahbar 2
  • Maziar Janghorban 3
  • Behdad Jahanbeen 4

1 Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

2 Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

3 Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.

4 Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

چکیده [English]

The FSP is a method for solid state processing of metal alloys. FP4M milling machine and non-consumable rotary-tools were used to create the necessary heat and further mix copper with titanium-dioxide powder. The base plate is made of copper with a purity of 99.9%. The heat created during the process on the copper piece and the titanium-dioxide nanoparticles in the groove leads to metallurgical changes in the microstructure of the base metal and leads to changes in the size and shape of the grains. The samples were subjected to metallography and microstructure investigations by OP, XRD, corrosion and wear tests. The results show that in the HAZ area, the grains were in the form of a fine grain structure of copper solid solution, containing twin regions with an average grain size of 14, but in the process area, the grains were formed as a distorted and disturbed structure of copper solid solution. The average friction coefficient in the base copper wear diagram is less than one. By matching with the corrosion graph, the base copper sample has better corrosion resistance.

کلیدواژه‌ها [English]

  • Friction Stir Processes
  • Copper
  • Titanium dioxide. Microstructure
  • Wear
  • Corrosion
[1]  Kumar, R., Kumar, H., Kumar, S., & Chohan, J. S., “Effects of tool pin profile on the formation of friction stir processing zone in AA1100 aluminium alloy”, Materials Today, Proceedings, Vol. 48, pp. 1594-1603, 2022.
[2]  Węglowski, M. S., “Friction stir processing–State of the art”, Archives of civil and Mechanical Engineering, Vol. 18(1), pp. 114-129, 2018.
[3]  Wu, B., Ibrahim, M. Z., Raja, S., Yusof, F., Muhamad, M. R. B., Huang, R., & Kamangar, S., “The influence of reinforcement particles friction stir processing on microstructure, mechanical properties, tribological and corrosion behaviors”, A review. Journal of Materials Research and Technology, 2022.
[4]  El-Sayed, M. M., Shash, A. Y., Abd-Rabou, M., & ElSherbiny, M. G., “Welding and processing of metallic materials by using friction stir technique”, A review, Journal of Advanced Joining Processes, Vol. 3, pp. 100059, 2021.
 [5] Merah, N., Abdul Azeem, M., Abubaker, H. M., Al-Badour, F., Albinmousa, J., & Sorour, A. A., “Friction Stir processing influence on microstructure, mechanical, and corrosion behavior of steels”, A review. Materials, Vol. 14, No.17, pp. 5023, 2021.
 
[6] Khodabakhshi, E., Kazemi, S., and Ahmadi F. S., "Investigation of mechanical properties and microstructure of copper matrix nanocomposite reinforced with silicon oxide particles produced by friction stir processing method", Journal of Science and Technology Composite, Vol. 4, No. 4, pp. 426-433, 2018.
[7] Moaref, A., and Amin R., "Evaluation of the effect of underwater friction stir welding on microstructure and tribological properties of copper and its alloy." Iranian Journal of Manufacturing Engineering, Vol.  6, No. 7, pp. 42-51, 2019.
[8] Rabiezadeh, A., and Saman G., "The influence of multi-pass friction stir processing on microstructure and sliding wear behavior of Cu/ZrO2 surface composite." International Journal of Materials Research, Vol. 111, No. 10, pp. 814-825. 2020.
[9]  Thallapalli, N., Kishore K. K., and Renuka B.,"Investigation on the micro-structure and mechanical properties of copper based surface composites fabricated by friction stir processing." Materials Today, Proceedings Vol. 27, pp. 1774-1779, 2020.
[10] Jain, V. K. S., Varghese, J., & Muthukumaran, S., “Effect of first and second passes on microstructure and wear properties of titanium dioxide-reinforced aluminum surface composite via friction stir processing”, Arabian Journal for Science and Engineering, Vol. 44, No.2, pp. 949-957. 2019.
[11] Madhu, H. C., Ajay K. P., Perugu, C. S., & Kailas, S. V., “Microstructure and mechanical properties of friction stir process derived Al-TiO2 nanocomposite”, Journal of Materials Engineering and Performance, Vol. 27, No.3, pp. 1318-1326. 2018.
[12] Sahraeinejad, S., Izadi, H., Haghshenas, M., & Gerlich, A. P., “Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters”, Materials Science and Engineering, Vol. A, No. 626, pp. 505-513., 2015.
[13] Mazaheri, H. fazel N. M., and Alaei. A., “Study of Microstructure and Tribological Behavior of the Composite Layer Produced of Silicon Carbide Particles on a Steel ASTM A106 GTAW Welding Method”, Journal of Science and Technology of Composite, Vol. 2, No. 1, pp. 65-72, 2015.
 [14] Saravanakumar, S., Gopalakrishnan, S., Dinaharan, I., & Kalaiselvan, K., “Assessment of microstructure and wear behavior of aluminum nitrate reinforced surface composite layers synthesized using friction stir processing on copper substrate”, Surface and Coatings Technology, Vol. 322, pp. 51-58, 2017.
[15] Shahedi, B., Damircheli, M., & Shirazi, A., “Experimental investigation of the effects of welding parameters and TiO2 nanoparticles addition on FSWed copper sheets”, Materials Research Express, Vol. 6, No.2, pp. 026525, 2018.
[16] Gopal P. M., "Influence of Silica Rich CRT and BN on Mechanical, Wear and Corrosion Characteristics of Copper-Surface Composite Processed Through Friction Stir Processing", Silicon, Vol. 13, No. 10,  pp. 3431-3440. 2021.
[17] Huang, G., Hou, W., Li, J., & Shen, Y., “Development of surface composite based on Al-Cu system by friction stir processing: Evaluation of microstructure, formation mechanism and wear behavior”, Surface and Coatings Technology, Vol. 344, pp. 30-42. 2018.