نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،مهندسی مکانیک،دانشگاه سمنان،سمنان.

2 استاد،مهندسی مکانیک،دانشگاه سمنان، سمنان.

3 دانشیار، مهندسی مکانیک، دانشگاه دامغان، دامغان.

4 استادیار، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران.

چکیده

پژوهش حاضر به مطالعه اثر افزودن نانوذرات پرلیت و لاستیک طبیعی با درصد‌های وزنی مختلف بر مدول کششی و استحکام ضربه‌ای پلی پروپیلن پرداخته است. برای این منظور، نمونه‌های مختلف با استفاده از دستگاه مخلوط کن داخلی بر اساس استانداردهای آزمون‌های کشش و ضربه تولید و تست شدند. همچنین با کمک روش بهینه سازی پاسخ سطح (RSM)، نقش پارامتر‌های ورودی بر پاسخ‌ها در جهت دست یابی به خواص مکانیکی بهینه و پیش بینی این خواص با مدل‌های ریاضی در قالب طرح پنج سطحی مرکب مرکزی (CCD) مورد بررسی قرار گرفت. بعلاوه، از آزمون -SEM به جهت مشاهده تغییرات ایجاد شده در ریز ساختار نمونه‌ها بهره گرفته شد. نتایج نشان داد، افزودن7 wt.% از نانوذرات پرلیت به ماتریس حاوی20 wt.% از لاستیک طبیعی، مقدار مدول کششی را 11.27% افزایش و استحکام ضربه‌ای را 52.01% نسبت به افزودن 3 wt.% از نانوذرات پرلیت به همان ماتریس کاهش می‌دهد. نتایج بهینه سازی چند متغیره اثبات کرد که درصد وزنی بهینه نانوذرات پرلیت و لاستیک طبیعی به ترتیب 4.04 و 35.26 wt.% بود. در این صورت بیشترین مقدار حاصل شده برای مدول کششی 508.04 MPa و استحکام ضربه‌ای‌ 108.52 J/m تعیین شد. با مشاهده تصاویر SEM استنباط شد که تغییر در اندازه فاز الاستومری به جهت استفاده از درصد‌های وزنی گوناگون تقویت کننده، باعث متفاوت شدن نتایج خواص مکانیکی نمونه‌ها با یکدیگر شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of perlite nanoparticles addition on the mechanical and microstructure properties of PP/NR blend fabricated by melt mixing processing: Optimizing by Response Surface Approach

نویسندگان [English]

  • Hadi Soleymani 1
  • Abdolhossein Fereidoon 2
  • Alireza Albooyeh 3
  • Mohammad Reza Nakhaei 4

1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran.

2 School of Engineering, Damghan University, Damghan, Iran.

3 School of Engineering, Damghan University, Damghan, Iran.

4 Faculty of Mechanics and Energy, Shahid Beheshti University, Tehran, Iran.

چکیده [English]

The present research has studied the effect of adding perlite and natural rubber nanoparticles with various weight percentages on the tensile modulus and impact strength of polypropylene. For this purpose, different samples were produced and tested using an internal mixer based on the standards of tensile and impact tests. Also, by using of response surface methodology (RSM), the role of input parameters on the responses was investigated in order to achieve optimal mechanical properties and predict these properties with mathematical models in the form of central composite five-level design (CCD). In addition, the SEM test was used to observe the changes made in the microstructure of the samples. The results showed that the addition of 7 wt.% of pearlite nanoparticles to the matrix containing 20 wt.% of natural rubber, the value of the tensile modulus increased by 11.27% and the impact strength by 52.01% compared to the addition of 3 wt.% of pearlite nanoparticles to the same matrix. The results of multiobjective optimization proved that the optimal weight percentage of pearlite nanoparticles and natural rubber was 4.04 and 35.26% wt. respectively. Is. In this case, the highest value obtained for tensile modulus was 508.04 MPa and impact strength was determined to be 108.52 J/m. By observing the SEM images, it was concluded that the change in the size of the elastomeric phase due to the use of different weight percentages of reinforcements has caused the results of the mechanical properties of the samples to differ from each other.

کلیدواژه‌ها [English]

  • Polypropylene
  • Natural rubber
  • Perlite
  • Nanocomposite
  • Response surface methodology
[1] Fereidoon, A., Memarian, S., Albooyeh, A.R. and Tarahomi, S., “Influence of mesoporous silica and hydroxyapatite nanoparticles on the mechanical and morphological properties of polypropylene” Materials & Design, Vol. 57, pp. 201-210, 2014.
[2] Albooyeh, A.R., “The effect of addition of Multiwall Carbon Nanotubes on the vibration properties of Short Glass Fiber reinforced polypropylene and polypropylene foam composites” Polymer Testing, Vol. 74, pp. 86-98, 2019.
[3] Mostafapour, A., Naderi, G. and Nakhaei, M.R., “Effect of process parameters on fracture toughness of PP/EPDM/nanoclay nanocomposite fabricated by novel method of heat assisted friction stir processing” Polymer Composites, Vol. 39, No. 7, pp. 2336-2346, 2018.
[4] Bakhtiari, A., Ashenai Ghasemi, F., Naderi, G. and Nakhaei, M.R., “An approach to the optimization of mechanical properties of polypropylene/ nitrile butadiene rubber/ halloysite nanotube/ polypropylene-gmaleic anhydride nanocomposites using response surface methodology” Journal of Polymer Composites, Vol. 41, No. 6, pp. 2330-2343, 2020.
[5] Albooyeh, A.R. and Fereidoon, A. “The effect of mesoporous silica and carbon nanotube on the vibration properties of polypropylene” In Persian, Modares Mechanical Engineering, Vol. 14, No. 1, pp. 67-73., 2014.
[6] Albooyeh, A.R. and Fereidoon, A. “Effect of Mesoporous Silica and Hydroxyapatite Nanoparticles on the Tensile and Dynamic Mechanical Thermal Properties of Polypropylene and Polypropylene Foam” In Persian, Iranian Journal of Polymer Science and Technology, Vol. 27, pp. 423-439., 2014.
[7] Hoseinlaghab, S., Farahani, M., Safarabadi M., and Nikkhah, M., “Tension-after-impact analysis and damage mechanism evaluation in laminated composites using AE monitoring” Mechanical Systems and Signal Processing Vol. 186, 109844, 2023.
[8] Mohammadkhani, P., Jalali, S.S. and Safarabadi, M., “Experimental and numerical investigation of Low-Velocity impact on steel wire reinforced foam Core/Composite skin sandwich panels” Composite Structures, Vol. 256, 112992, 2021.
[9] Hadad, M., Babazade, A., and Safarabadi, M., “Investigation of the Effect of Graphene Nano Plates and Carbon Nanotubes on the Improvement of Mechanical Properties of Aluminum Matrix Nanocomposites” In Persian, Journal of Science and Technology of Composites Vol. 7, pp. 1197-1206, 2021.
[10] Hadad, M., Babazade, A., and Safarabadi, M., “Investigation and comparison of the effect of graphene nanoplates and carbon nanotubes on the improvement of mechanical properties in the stir casting process of aluminum matrix nanocomposites” The International Journal of Advanced Manufacturing Technology, Vol. 109, pp. 2535–2547, 2020.
[11] Albooyeh, A.R., Tarahomi, S., Fereidoon, A. and Taherian, Z., “The effect of processing conditions on the mechanical properties of polypropylene/mesoporous silica-hydroxyapatite hybrid nanocomposites” Mechanics Of Advanced Composite Structures, Vol. 3, No. 2, pp. 73-82, 2016.
[12] Bastam, K., and Zeinedini, A., “Tensile properties of flexible latex-based composites reinforced by cotton fibers in the presence of shape memory alloys, In Persian, Journal of Science and Technology of Composites Vol. 8, pp. 1780-1788, 2022.
[13] Ghorbankhan, A., Nakhaei, M.R. and Safarpour, P., “Modeling and optimization of mechanical properties of PA6/NBR nanocomposite reinforced with perlite nanoparticles” In Persian, Journal of Science and Technology of Composites, Vol. 8, No. 1, pp. 1421-1430, 2021.
[14] Sahraeian, R. and Esfandeh, M., “Mechanical and morphological properties of LDPE/perlite nanocomposite films Polym” Polymer Bulletin, Vol. 74, No. 4, pp. 1327-1341, 2017.
[15] Sahraeian, R., Hashemi, S.A., Esfandeh, M. and Ghasemi, I., “Preparation of nanocomposites based on LDPE/Perlite: Mechanical and Morphological Studies” Polymers and Polymer Composites, Vol. 20, No. 7, pp. 639–646, 2012.
[16] De Oliveira, A.G., Jandorno Jr, J.C., da Rocha, E.B.D., de Sousa, A.M.F. and da Silva, A.L.N., “Evaluation of expanded perlite behavior in PS/Perlite composites” Applied Clay Science, Vol. 181, Vo. 15, 105223, 2019.
[17] Albooyeh, A.R., Soleymani, P., and Taghipoor, H., “Evaluation of the mechanical properties of hydroxyapatite-silica aerogel/ epoxy nanocomposites: Optimizing by response surface approach” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 136, No. 105513, 2022.
[18] Yaghoobi, H. and Fereidoon, A., “Modeling and optimization of tensile strength and modulus of polypropylene/ kenaf fiber bio composites using box-behnken response surface method” Polymer Composites, Vol. 39, No. S1, pp. E1-E646, 2018.
[19] Sharma, S.K. and Nayak, S.K., “Surface modified clay/ polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal and morphological properties” Polymer Degradation and Stability, Vol. 94, No. 1, pp. 132-138, 2009.
[20] Golparvar, M. and Fasihi, M., “Investigation of mechanical properties of polypropylene-based hybrid nanocomposites using experimental design” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 307-314, 2018.
[21] Daneshpayeh, S., Ashenai Ghasemi, F. and Ghasemi, I., “Mechanical properties of nanocomposites based on polypropylene-linear low density polyethylene-titanium dioxide nano particles by response surface methodology” Journal of Tabriz Mechanical Engineering, Vol. 77, pp. 903-101, 2017.
[22] Bicy, K., Rouxel, D., Poncot, M., Royaud, I., Bourson, P., Chapron, D., Kalarikkal, N. and Thomas, S., “Interfacial tuning and designer morphologies of microporous membranes based on polypropylene/natural rubber nanocomposites” Journal of Applied Polymer Science, Vol. 138, No. 41, pp. 51208, 2021.
[23] Lopattananon, N., Tanglakwaraskul, S., Kaesaman, A., Seadan, M. and Sakai, T., “Effect of nanoclay addition on morphology and elastomeric properties of dynamically vulcanized natural rubber/ polypropylene nanocomposites” International Polymer Processing, Vol. 29, No. 3, 2014.
[24] Sharika, T., Abraham, J., Arif P, M., George, S.C., Kalarikkal, N. and Thomas, S., “Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties” Composites Part B, Vol. 173, 106798, 2019.
[25] Chandran, N., Sarathchandran, C., Jose, S., Thankappan, S. and Thomas, S., “Organic modifier induced interfacial transformation, morphology and physico-mechanical properties of PP/NR based blend nanocomposites” Composites Part B, Vol. 194, 2020.
[26] Banerjee, S., Joshi, M. and Ghosh, A.K., “Optimization of polypropylene/ clay nanocomposite processing using box-behnken statistical design” Journal of Applied Polymer Science, Vol. 123, No. 4, pp. 2042-2051, 2012.
[27] Nakhaei, M.R., Mostafapour, A. and Naderi, G., “Optimization of mechanical properties of PP/EPDM/clay nanocomposite fabricated by friction stir processing with response surface methodology and neural networks” Polymer Composites, Vol. 38, No. S1, pp. E421-E432, 2017.
[28] Nouri-Niyaraki, M., Ashenai-Ghasemi, F., Ghasemi, I. and Daneshpayeh, S., “Experimental analysis of graphene nanoparticles and glass fibers effect on mechanical and thermal properties of polypropylene/ EPDM based nanocomposites” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 2, pp. 169-176, 2018.
[29] Maleki Khorasgani, A. and Shahrajabian, H., “Investigation of the physical and mechanical properties of wood plastic composites based on high density polyethylene/ polypropylene/ recycled poly (ethylene terephthalate): part Ⅱ, Constrained Optimization” In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 119-126, 2019.
[30] Nakhaei, M. R., Mostafapour, A., Dubois, C., Naderi, G., & Reza Ghoreishy, M. H., “Study of morphology and mechanical properties of PP/EPDM/clay nanocomposites prepared using twin‐screw extruder and friction stir process. Polymer composites” Vol. 40, No. 8, pp. 3306-3314, 2019.
[31] Ning, N., Li, S., Wu, H., Tian, H., Yao, P., Hu, Guo-Hua., Tian, M. and Zhang, L, “Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review” Progress in Polymer Science, Vol. 79, pp. 61-97, 2018.
[32] Fasihi, M. and Mansouri, H., “Effect of Rubber Interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened polypropylene” Journal of Applied Polymer Science, Vol. 133, No. 40, pp. 44068, 2016.
[33] Yaghoobi, H. and Fereidoon, A., “An experimental investigation and optimization on the impact strength of kenaf fiber biocomposite: application of response surface methodology” Polymer Bulletin, Vol. 75, No. 8, pp. 3283-3309, 2018.
[34] Mousavi, S.R., Faraj Nejad, S., Jafari, M. and Paydayesh, A., “Polypropylene/ethylene propylene diene monomer/cellulose nanocrystal ternary blend nanocomposites: Effects of different parameters on mechanical, rheological, and thermal properties” Polymer Composites, Vol. 42, No. 9, pp. 4187-4198, 2021.
[35] Soleymani, H., Nakhaei, M.R. and Naderi, Gh., “Experimental and mathematical investigation of mechanical and microstructural properties of PA6/NBR nanocomposite reinforced with silicon carbide (SiC) nanoparticles” In Persian, Journal of Science and Technology of Composites, Vol. 8, No. 4, pp. 1789-1796, 2022.
[36] Mehrdad Shokrieh, M., Zeinedini, A., and Ghoreishi, M., “Effects of adding multiwall carbon nanotubes on mechanical properties of Epoxy resin and Glass/Epoxy laminated composites” In Persian, Modares Mechanical Engineering,, Vol. 15, pp. 125-133, 2015.