نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فرآوردههای چندسازه چوبی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان .

2 استاد، گروه تکنولوژی و مهندسی چوب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

3 استاد ، گروه تکنولوژی و مهندسی چوب، دانشگاه علوم کشاورزی و منابع طبیعی، گرگان.

4 دانشیار، گروه سامانههای زیستی، تهران، دانشگاه شهید بهشتی، پردیس زیرآب، مازندران.

5 دانشیار، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه سمنان.

6 گروه مهندسی عمران و محیط زیست، دانشگاه کانکتیکات

10.22068/jstc.2023.1972309.1809

چکیده

این تحقیق با هدف ساخت و ارزیابی ویژگی‌های مکانیکی و فیزیکی (جذب آب) کامپوزیت سبز ژئوپلیمر تقویت‌شده با الیاف کنف و نانولوله کربنی انجام شد. برای این منظور تاثیر مقدار الیاف کنف، نانولوله کربن و نیز مقدار آب هر کدام در 5 سطح (درصد وزنی) نسبت به ژئوپلیمر مبتن ی بر متاکائولن و سرباره فولاد بر خواص مکانیکی و فیزیکی کامپوزیت مورد ارزیابی قرار گرفتند. از روش آماری سطح پاسخ و طرح مرکب مرکزی برای انتخاب اختلاط‌‌ها استفاده شد. بر روی ‌نمونه‌ها، آزمون‌های خمش (مقاومت خمشی، مدول‌ الاستیستیه و چقرمگی شکست)، فشار و جذب آب انجام گردید. همچنین، ریزساختار ژئوپلیمر و کیفیت پراکندگی نانولوله کربن و الیاف کنف در ماتریس کامپوزیت با استفاده از تصاویرFESEM ارزیابی گردید. نتایج نشان داد که با اضافه‌کردن مقدار الیاف کنف تا سطح 7.5 درصد مقاومت خمشی، فشاری، چقرمگی شکست و جذب آب افزایش یافتند، در حالی‌که در مقادیر بالاتر الیاف مقادیر مقاومت مکانیکی روند نزولی داشتند. همچنین حضور نانولوله کربن به‌عنوان تقویت‌کننده، تا سطح 0.6 درصد تاثیر مثبت در افزایش مقادیر مقاومتی کامپوزیت‌ داشتند. بررسی‌های FESEM نیز افزایش اندازه منافذ ماده زمینه را با افزایش مقدار نانو‌الیاف و نانولوله‌ کربن نشان داد. به طور کلی در این تحقیق، با توجه به نتایج آماری، نمونه با ترکیب شرایط اختلاط الیاف کنف 7.5 درصد، نانولوله کربن 0.6 درصد و آب به مقدار 29 درصد به عنوان ترکیب بهینه معرفی می‌گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Manufacturing and evaluation of mechanical and physical properties of green geopolymer composite reinforced with kenaf fibers and carbon nanotubes

نویسندگان [English]

  • Vajihe Sadeghi Panah 1
  • Mehrab Madhoushi 2
  • Taghi Tabarsa 3
  • Morteza Nazerian 4
  • Ebrahim Najafi Kani 5
  • Zahra Abdullahnejad 6

1 Ph.D. Student of Wood Composite Products, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

4 Associate Professor, Department of Biological Systems Engineering, Shahid Beheshti University, Zirab Campus, Mazandaran, Iran.

5 Associate Professor, Faculty of Chemical, Oil and Gas Engineering, Semnan University, Semnan, Iran.

6 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, United States of America.

چکیده [English]

The aim of this study was manufacturing and evaluation of the mechanical and physical (water absorption) of a green geopolymer composite reinforced with kenaf fibers and carbon nanotubes. For this purpose, the effect of amount of kenaf fibers, carbon nanotubes and water each in 5 levels (% wt) compared to metakaolin-based geopolymer and steel slag on the mechanical and physical properties of the composite were evaluated. Response surface method and central composite design were used as statistical method to select the mixtures. Bending tests (bending strength, modulus of elasticity and fracture toughness), compression test and water absorption were conducted on the samples. Also, ultrastructure of geopolymer and dispersion quality of carbon nanotubes and kenaf fibers in the composite matrix, was evaluated by FESEM images. The results showed that by increasing the amount of kenaf fibers up to 7.5%, the bending strength, compressive strength, fracture toughness and water absorption increased, whilst at higher amounts of the fibers, the values of mechanical strength decreased. Also, the use of carbon nanotube as a reinforcement up to 0.6%, had a positive effe on increasing the mechanical strengths of the composite. The results of FESEM showed that with increasing the amount of percentage of kenaf fibers, and carbon nanotubes the diameters of pores in matarix highly increased. Generally, in this research accoriding to the statistical results, the sample with the combination of 7.5% kenaf fiber, 0.6% carbon nanotube and 29% water is introduced as the optimal combination.

کلیدواژه‌ها [English]

  • Composite
  • Geopolymer
  • Carbon nanotube
  • Kenaf fiber
  • Fracture toughness
[1] Zhang, P., Wang, K., Wang, J., Guo, J., Hu, S., and Ling, Y., “Mechanical Properties and Prediction of Fracture 
Parameters of Geopolymer/Alkali-Activated Mortar Modified with PVA Fiber and Nano-SiO2”, Ceramics 
International, Vol. 46, No. 12, pp. 20027-20037, 2020.
[2] Kioupis, D., Tsivilis, S., and Kakali, G., “Development of Green Building Materials Through Alkali Activation of 
Industrial Wastes and By-Products”, Materials Today: Proceedings, Vol. 5, No. 14, pp. 27329-27336, 2018.
[3] Kilani, A., Fapohunda, C., Adeleke, O., and Metiboba, C., “Evaluating the Effects of Agricultural Wastes on Concrete 
and Composite Mechanical Properties”, Research on Engineering Structures and Materials, Vol. 8, No. 2, pp. 307-
336, 2022.
[4] Altwair, N. M., and Kabir, S., “Green Concrete Structures by Replacing Cement with Pozzolanic Materials to Reduce 
Greenhouse Gas Emissions for Sustainable Environment”, In 6th International Engineering and Construction Conference, Cairo, Egypt, 269-279, 2010.
[5] Imbabi, M. S., Carrigan, C., and McKenna, S., “Trends and Developments in Green Cement and Concrete Technology”, 
International Journal of Sustainable Built Environment, Vol. 1, No. 2, pp. 194-216, 2012.
[6] Xu, Z., Huang, Z., Liu, C., Deng, H., Deng, X., Hui, D., and Bai, Z., “Research Progress on Key Problems of 
Nanomaterials-Modified Geopolymer Concrete”, Nanotechnology Reviews, Vol. 10, No. 1, pp. 779-792, 2021.
[7] Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., and Duan, W. H., “Nano Reinforced Cement and Concrete Composites 
and New Perspective from Graphene Oxide”, Construction and Building materials, Vol. 73, pp. 113-124, 2014.
[8] Bazrkar, H., Lork, A., and Aminnejad, B., “Extraction of Mechanical Properties of Carbon Nanotubes in Water-Based 
Polymer latex for Application in Petroleum Well Cementing”, In Persian, Journal of Science and Technology 
of Composites, Vol. 8, No. 4, pp. 1758-1766, 2022.
[9] Ghafari, F., Bozorgi, M. H., and Salari, M., “Applications of Nanotechnology in Construction: A Short Review”, 
Advances in Applied NanoBio-Technologies, Vol. 3, No. 1, pp. 82-86, 2022.
[10] Zare, Y., and Rhee, K. Y. “Expression of Normal Stress Difference and Relaxation Modulus for Ternary 
Nanocomposites Containing Biodegradable Polymers and Carbon Nanotubes by Storage and Loss Modulus Data”, 
Composites Part B: Engineering, Vol. 158, pp. 162-168, 2019.
[11] Yan, L., Kasal, B., and Huang, L. “A Review of Recent Research on the Use of Cellulosic Fibres, Their Fibre Fabric 
Reinforced Cementitious, Geo-Polymer and Polymer Composites in Civil Engineering”, Composites Part B: 
Engineering, Vol. 92, pp. 94-132, 2016.
[12] Siddique, R., Khatib, J., and Kaur, I. “Use of Recycled Plastic in Concrete: A review”, Waste Management, Vol. 28, 
No. 1, pp. 1835-1852, 2008.
[13] Alomayri, T., Shaikh, F. U. A., and Low, I. M. “Synthesis and Characterization of Mechanical Properties of Cotton 
Fiber-Reinforced Geopolymer Composites”, Composites Part B: Engineering, Vol. 60, pp. 36-42, 2014.
[14] Behera, P., Baheti, V., Militky, J., and Naeem, S. “Microstructure and Mechanical Properties of Carbon 
Microfiber Reinforced Geopolymers at Elevated Temperatures” Construction and Building Materials, Vol. 
160, pp. 733-743, 2018.
[15] Ritchie, R. O. and Liu, D. “Introduction to Fracture Mechanics”, Elsevier, pp. 81-99, Oxford, 2021.
[16] Anderson, M. J., and Whitcomb, P. J., “RSM Simplified: Optimizing Processes Using Response Surface Methods for 
Design of Experiments”, Second ed, Taylor & Francis, Boca Raton, 2016.
[17] Wood-based panels. Determination of modulus of elasticity in bending and of bending strength, British Standards 
Institution, (BS) EN: 310, 1993.[18] Standard test method for compressive strength of hydraulic cement mortars, Annual Book of ASTM Standard, 
C109/C109M-02, 2002.
[19] Saafi, M., Andrew, K., Tang, P. L., McGhon, D., Taylor, S., Rahman, M., Yang, Sh., and Zhou, X., “Multifunctional 
Properties of Carbon Nanotube/Fly Ash Geopolymeric Nanocomposites”, Construction and Building Materials, Vol. 
49, pp. 46-55, 2013.
[20] Orouji, M., Zahrai, S. M., and Najaf, E., “Effect of Glass Powder and Polypropylene Fibers on Compressive and 
Flexural Strengths, Toughness and Ductility of Concrete: An environmental approach”, Structures, Vol. 33, pp. 4616-
4628, 2021.
[21] Akono, A. “Fracture Behavior of Metakaolin‐Based Geopolymer Reinforced with Carbon Nanofibers”, 
International Journal of Ceramic Engineering and Science, Vol. 2, No. 5, pp. 234-242, 2020.
[22] Okada, K., Ooyama, A., Isobe, T., Kameshima, Y., Nakajima, A., and MacKenzie, K. J. D., “Water Retention 
Properties of Porous Geopolymers for Use in Cooling Applications”, Journal of the European Ceramic Society, 
Vol. 29, No. 10, pp. 1917–1923, 2009