نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی همدان

چکیده

در این مقاله، یک مدل توسعه یافته میکرومکانیکی برای پیش بینی رسانایی الکتریکی موثر نانوکامپوزیت های پلیمری حاوی نانولوله های کربنی ارائه شده است. این مدل بر اساس نظریه میدان میانگین و با در نظر گرفتن پدیده تونل زنی کوانتومی الکترون ها بین نانو پرکننده ها ایجاد شده است. نانولوله های کربنی به شکل استوانه فرض شده اند که یک لایه بین فازی آنها را پوشش داده است. نانولوله های کربنی به صورت تصادفی در مکان های مختلف در داخل ماتریس پلیمری و با جهت گیری تصادفی توزیع شده اند. تاثیر پارامتر های گوناگون نظیر ابعاد هندسی نانولوله های کربنی، نسبت اندازه آنها، ضخامت لایه بین فازی، تونل زنی کوانتومی الکترون ها، رسانایی ماتریس پلیمر، رسانایی نانولوله های کربنی و رسانایی لایه بین فازی بر روی رسانایی موثر نانوکامپوزیت در مدل نظری در نظر گرفته شده اند. مدل ارائه شده رفتار های الکتریکی نانوکامپوزیت ها را در ناحیه عایق، ناحیه پرکولاسیون و ناحیه فلزی و همچنین گذار تیز رسانایی یا آغاز پرکولاسیون و ناحیه فلزی در کسر حجمی های بالا را به خوبی بازتولید می کند. نتایج نشان می دهد که با افزایش اندازه نانولوله های کربنی در نانوکامپوزیت، آستانه پرکولاسیون کاهش می یابد. مقدار رسانایی پرکننده و ماتریس به ترتیب تنها بر ناحیه فلزی و عایق اثر گذار هستند. به منظور صحت سنجی ، نتایج آزمایشگاهی موجود در مطالعات قبلی با مدل حاضر پیش بینی شده است که مدل ارائه شده به خوبی این نتایج تجربی را پیش بینی می کند.

کلیدواژه‌ها

عنوان مقاله [English]

A developed micromechanical model to predict electrical properties of polymer nanocomposites containing carbon nanotubes

نویسندگان [English]

  • Mojtaba Mazaheri
  • Javad Payandehpeyman

Hamedan University of Technology

چکیده [English]

In this paper, a developed micromechanical model to predict the effective electrical conductivity of polymer nanocomposites containing carbon nanotubes was presented. This model was based on mean field theory and considering the quantum tunneling phenomenon of electrons between nanofillers. Carbon nanotube was assumed to be cylindrical, which was covered by an interphase layer. Carbon nanotubes were randomly distributed and oriented inside the polymer matrix. The effect of various parameters such as the geometric dimensions of carbon nanotubes, their aspect ratio, the thickness of the interphase layer, the quantum tunneling of electrons, the conductivity of the polymer matrix, the conductivity of carbon nanotubes and the conductivity of the interphase layer on the effective conductivity of the nanocomposite were considered in the theoretical model. The presented model reproduced the electrical behavior of nanocomposites in the insulating region, the percolation region, and the metal region, as well as the sharp transition of conductivity or the beginning of percolation and the metal region in high volume fractions. The results showed that by increasing the size of carbon nanotubes in nanocomposite, the percolation threshold decreased. The conductivity values of the filler and the matrix, respectively, only affected the metal and insulation areas. Finally, the present model was used to reproduce the experimental reported data that the predicted results were in good agreement with the experimental data.

کلیدواژه‌ها [English]

  • Conductive polymer nanocomposite
  • Carbon nanotube
  • Interphase layer
  • Percolation threshold
  • Micromechanical model
[1]  Payandehpeyman, J., Parvini, N., Moradi, K., and Hashemian, N., “Detection of SARS-CoV-2 Using Antibody–Antigen Interactions with Graphene-Based Nanomechanical Resonator Sensors,” ACS Appl. Nano Mater. , Vol. 4, No. 6, pp. 6189–6200, 2021.
[2]  Payandehpeyman,  javad, Majzoobi, G., and Bagheri, R., “Deriving Parameters of Pressure-Dependent Yield Surface for Polymeric Composites Using Kriging-based Optimization Method,” Modares Mech. Eng. , Vol. Inpress, 2015.
[3]  Malek-mohammadi, H., Majzoobi, G., and Payandehpeyman, J., “Experimental and analytical study of the compression behavior of graphene oxide and nano-clay reinforced polycarbonate nanocomposites at low strain rates,” , Vol. 6, No. 3, pp. 427–434, 2019.
[4]  Shokrieh, M.M. and Zeinedini, A., “Effect of CNTs debonding on mode I fracture toughness of polymeric nanocomposites,” JMADE , Vol. 101, pp. 56–65, 2016.
[5]  Zeinedini, A., Shokrieh, M.M., and Ebrahimi, A., “The e ff ect of agglomeration on the fracture toughness of CNTs-reinforced nanocomposites,” Theor. Appl. Fract. Mech. , Vol. 94, No. January, pp. 84–94, 2018.
[6]  Wernik, J.M. and Meguid, S.A., “Recent developments in multifunctional nanocomposites using carbon nanotubes,” Appl. Mech. Rev. , Vol. 63, No. 5, pp. 1–40, 2010.
[7]  Verma, P., Saini, P., Malik, R.S., and Choudhary, V., “Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder,” Carbon N. Y. , Vol. 89, pp. 308–317, 2015.
[8]  Sanli, A., Benchirouf, A., Müller, C., and Kanoun, O., “Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites,” Sensors Actuators, A Phys. , Vol. 254, No. 2017, pp. 61–68, 2017.
[9]  Dietrich Stauffer, A.A., Dietrich Stauffer, Ammon Aharony - Introduction to percolation theory-CRC Press (1994).pdf, , pp. 192.
[10] Feng, C. and Jiang, L., “Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)-polymer nanocomposites,” Compos. Part A Appl. Sci. Manuf. , Vol. 47, No. 1, pp. 143–149, 2013.
[11] Tabatabaee, M., Taheri-Behrooz, F., Razavi, S.M., and Liaghat, G.H., “Electrical conductivity enhancement of Carbon/Epoxy composites using nanoparticles,” J. Sci.  Technol. Compos. , Vol. 5, No. 4, pp. 605–614, 2019.
[12] Mora, A., Han, F., and Lubineau, G., “Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles,” Model. Simul. Mater. Sci. Eng. , Vol. 26, No. 3, 2018.
[13] Fang, C., Zhang, J., Chen, X., and Weng, G.J., “A Monte Carlo model with equipotential approximation and tunneling resistance for the electrical conductivity of carbon nanotube polymer composites,” Carbon N. Y. , Vol. 146, pp. 125–138, 2019.
[14] Lu, X., Yvonnet, J., Detrez, F., and Bai, J., “Multiscale modeling of nonlinear electric conductivity in graphene-reinforced nanocomposites taking into account tunnelling effect,” J. Comput. Phys. , Vol. 337, pp. 116–131, 2017.
[15] Taherian, R., “Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites,” Compos. Sci. Technol. , Vol. 123, pp. 17–31, 2016.
[16] Mazaheri, M., Payandehpeyman, J., and Khamehchi, M., “A developed theoretical model for effective electrical conductivity and percolation behavior of polymer-graphene nanocomposites with various exfoliated filleted nanoplatelets,” Carbon N. Y. , Vol. 169, pp. 264–275, 2020.
[17] García-Macías, E., D’Alessandro, A., Castro-Triguero, R., Pérez-Mira, D., and Ubertini, F., “Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites,” Compos. Part B Eng. , Vol. 108, pp. 451–469, 2017.
[18] Payandehpeyman, J., Mazaheri, M., and Khamehchi, M., “Prediction of electrical conductivity of polymer-graphene nanocomposites by developing an analytical model considering interphase, tunneling and geometry effects,” Compos. Commun. , Vol. 21, No. March, pp. 100364, 2020.
[19] Payandehpeyman, J. and Mazaheri, M., “Parametric investigation of effective elastic properties of exfoliated polymer/clay nanocomposites using a developed mean-field model,” Mech. Adv. Mater. Struct. , Vol. 0, No. 0, pp. 1–12, 2021.
[20] Farhadpour, M., Jahanaray, B., Pircheraghi, G., and Bagheri, R., “Simultaneous use of physical and chemical dispersants for electrical conductivity enhancement in polyamide 6/carbon nanotube/conductive carbon black hybrid nanocomposites,” Polym. Technol. Mater. , Vol. 00, No. 00, pp. 1–13, 2021.
[21] Mazaheri, M., Payandehpeyman, J., and Jamasb, S., “Modeling of Effective Electrical Conductivity and Percolation Behavior in Conductive-Polymer Nanocomposites Reinforced with Spherical Carbon Black,” Appl. Compos. Mater. , No. 0123456789, 2021.
[22] Yan, K.Y., Xue, Q.Z., Zheng, Q.B., and Hao, L.Z., “The interface effect of the effective electrical conductivity of carbon nanotube composites,” Nanotechnology , Vol. 18, pp. 6, 2007.
[23] Xue, Q., “The influence of particle shape and size on electric conductivity of metal-polymer composites,” Eur. Polym. J. , Vol. 40, No. 2, pp. 323–327, 2004.
[24] J. Griffiths, D., “Introduction to Electrodynamics David J. Griffiths Fourth Edition,” ISBN 9788578110796, 2013.
[25] Simmons, J.G., “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys. , Vol. 34, No. 6, pp. 1793–1803, 1963.
[26] Shayesteh Zeraati, A. and Sundararaj, U., “Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding,” Can. J. Chem. Eng. , Vol. 98, No. 5, pp. 1036–1046, 2020.
[27] Kumar, S., Gupta, T.K., and Varadarajan, K.M., “Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing,” Compos. Part B Eng. , Vol. 177, pp. 107285, 2019.
[28] Maiti, S., Suin, S., Shrivastava, N.K., and Khatua, B.B., “Low percolation threshold in melt-blended PC/MWCNT nanocomposites in the presence of styrene acrylonitrile (SAN) copolymer: Preparation and characterizations,” Synth. Met. , Vol. 165, No. 1, pp. 40–50, 2013.
[29] Reddy, S.K., Kumar, S., Varadarajan, K.M., Marpu, P.R., Gupta, T.K., and Choosri, M., “Strain and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites,” Mater. Sci. Eng. C , Vol. 92, No. June, pp. 957–968, 2018.