نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی بیرجند، بیرجند .

2 استادیار، مهندسی مکانیک، دانشگاه صنعتی بیرجند، بیرجند.

3 دانشیار، مهندسی مواد، دانشگاه صنعتی بیرجند، بیرجند.

چکیده

با توجه به اهمیت بالای تیتانیوم خالص در صنعت پزشکی و ضعف خواص مکانیکی و فیزیکی این فلز، در این تحقیق به جهت رشد خواص مکانیکی و در عین حال بهبود خواص زیستی، کامپوزیت تیتانیوم خالص تقویت شده با نانوذرات اکسید گرافن احیا شده با استفاده از روش SPS ساخته و در دمای اتاق با روش اکستروژن برشی ساده تحت فرآیند تغییرشکل پلاستیک شدید قرار گرفت. تأثیر سینترینگ پلاسما ، فرآیند تغییرشکل پلاستیک شدید و قرارگیری در محلول شبیه‌ساز بدن بر تغییرات خواص مکانیکی، خوردگی و زیستی این گرید تیتانیوم بررسی شد. در اثر افزودن مقدار 1/0 درصد وزنی RGO به تیتانیوم خالص و سپس ریزدانه کردن ساختار کامپوزیت تولیدی، با یک مرحله اکستروژن برشی ساده، میزان ایجاد کلسیم (استخوان سازی) در بدنه و بعد از قرارگیری 28 روزه در محلول شبیه ساز بدن، بیشتر و دارای کیفیت بالاتری نسبت به نمونه خالص سینتر شده است. همچنین میزان استحکام کششی این نمونه نیز بعد از قرارگیری 28 روزه در محلول شبیه ساز بدن بیشتر از نمونه خالص سینتر شده بوده به طوری که استحکام کششی نمونه خالص و نمونه دارای RGO ریزدانه شده به ترتیب 750 و 4/1089 مگاپاسکال ثبت شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental investigation of mechanical properties, corrosion and biocompatibility of Ti/RGO composite made by the combined method of spark plasma sintering and simple shear extrusion

نویسندگان [English]

  • Sayyed Mohammad Reza Sedehi 1
  • Mohammad Khosravi 2
  • Yadollah Yaghoubinezhad 3

1 Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran.

2 Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran.

3 Department of Materials Engineering, Birjand University of Technology, Birjand, Iran.

چکیده [English]

Considering the high importance of pure titanium in the medical industry and the weak mechanical and physical properties of this metal, in this research, in order to develop mechanical properties and at the same time improve biological properties, pure titanium composite reinforced with regenerated graphene oxide nanoparticles using the method SPS was fabricated and subjected to severe plastic deformation at room temperature by a simple shear extrusion method. The effect of plasma sintering, severe plastic deformation process and placement in a body simulating solution on changes in the mechanical, corrosion and biological properties of this titanium grade was investigated. As a result of adding 0.1% by weight of RGO to pure titanium and then fine-granulating the produced composite structure, with a simple shear extrusion step, the amount of calcium (bone formation) in the body and after 28 days in the body simulating solution, more and it has a higher quality than the pure sintered sample. Also, the tensile strength of this sample after 28 days in the body simulating solution was higher than the pure sintered sample, so that the tensile strength of the pure sample and the sample with fine-grained RGO were recorded as 750 and 1089.4 MPa, respectively.

کلیدواژه‌ها [English]

  • Titanium
  • spark plasma sintering
  • corrosion
  • simple shear extrusion
  • biocompatibility
[1] Gao, C., Peng, S., Feng, P., and Shuai, C., “Bone biomaterials and interactions with stem cells,” Bone research, Vol. 5, No. 1, pp. 1-33, 2017.
[2] Hasany, M., Thakur, A., Taebnia, N., Kadumudi, F. B., Shahbazi, M. A., Pierchala, M. K., “Combinatorial screening of nanoclay-reinforced hydrogels: a glimpse of the -holy grail- in orthopedic stem cell therapy,” ACS applied materials & interfaces, Vol. 10, No. 41, pp. 34924-34941, 2018.
[3] Gill, S. P. S., Raj, M., Singh, P., Kumar, D., Singh, J., & Rastogi, P., “Infected nonunion with implant in situ in long bone fractures, managed by retention of implant-our experience,” Journal of Orthopedics, Traumatology and Rehabilitation, Vol. 9, No.1, pp. 29, 2018.
 [4] Saghiri, M. A., Orangi, J., Asatourian, A., Gutmann, J. L., Garcia-Godoy, F., Lotfi, M., & Sheibani, N., “Calcium silicate-based cements and functional impacts of various constituents,” Dental materials journal, Vol. 36, No.1, pp. 8-18, 2017.
[5] Jin, W., & Chu, P. K. “Orthopedic implants,” Vol. 17, No.20, pp. 1-15, 2017.
[6] Wan, X., Hu, A., Li, M., Chang, C., & Mao, D., “Performances of CaSiO3 ceramic sintered by Spark plasma sintering,” Materials Characterization, Vol. 59, No.3, pp. 256-260, 2008.
[7] Liu, W., Huan, Z., Xing, M., Tian, T., Xia, W., Wu, C., “Strontium-substituted dicalcium silicate bone cements with enhanced osteogenesis potential for orthopaedic applications,” Materials, Vol. 12, No. 14, pp. 2276, 2019.
[8] Beltrán, V., Lazzarini, M., Figueroa, R., Sousa, V., & Engelke, W., “In Situ Endoscopic Analysis of Vascular Supply and Regenerated Alveolar Bone in β-TCP Grafted and Ungrafted Postextraction Sites before Implant Placement: A Prospective Case Control Study.” BioMed Research International, 2019.
[9] Balasubramanian, R., Nagumothu, R., Parfenov, E., & Valiev, R., “Development of nanostructured titanium implants for biomedical implants–A short review,” Materials Today: Proceedings, Vol. 46, No. 1, pp. 1195-1200, 2021.
[10] Cao, H. C., & Liang, Y. L., “The microstructures and mechanical properties of graphene-reinforced titanium matrix composites,” Journal of Alloys and Compounds, Vol. 812, No. 1, pp. 152057, 2020.
[11] Dong, L., Chen, W., Deng, N., Song, J., & Wang, J., “Investigation on arc erosion behaviors and mechanism of W70Cu30 electrical contact materials adding graphene,” Journal of Alloys and Compounds, Vol. 696, No. 1, pp. 923-930, 2017.
[12] Pérez-Bustamante, R., Bolaños-Morales, D., Bonilla-Martínez, J., Estrada-Guel, I., & Martínez-Sánchez, R., “Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying,” Journal of alloys and compounds, Vol. 615, No. 1, pp. S578-S582, 2014.
[13] Khodabakhshi, F., Arab, S. M., Švec, P., & Gerlich, A. P., “Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: Dispersion, microstructure, stability, and strengthening.” Materials Characterization, Vol. 132, No. 1, pp. 92-107, 2017.
[14] Lütjering, G., Williams, J.C., Gysler, A., “Titanium engineering materials and progresses,” 2nd ed. Berlin: Springle; Vol. 379, 2007.
[15] Luo, S. D., Li, Q., Tian, J., Wang, C., Yan, M., Schaffer, G. B., & Qian, M., “Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties,” Scripta Materialia, Vol. 69, No. 1, pp. 29-32, 2013.
[16] Shufeng, L. I., Kondoh, K., Imai, H., Chen, B., Jia, L., & Umeda, J., “Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB.” Materials Science and Engineering: A,Vol. 628, No. 1, pp. 75-83, 2015.
[17] Valiev, R. Z., & Langdon, T. G., “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in materials science, Vol. 51, No. 7, pp. 881-981, 2006.
[18] Zhilyaev, A. P., & Langdon, T. G., “Using high-pressure torsion for metal processing: Fundamentals and applications,” Progress in Materials science, Vol. 53, No. 6, pp. 893-979, 2008.
[19] Azushima, A., R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, “CIRP Ann,” Manuf & Technol, Vol. 57, No. 6, pp. 716–735, 2008.
[20] Valiev, R. Z., Islamgaliev, R. K., & Alexandrov, I. V., “Bulk nanostructured materials from severe plastic deformation,” Progress in materials science, Vol. 45, No. 2, pp. 103-189, 2000.
[21] A.P. Zhilyaev, T.G. Langdon, Prog. Mater Sci, Vol. 53, No. 2, pp. 881–981, 2008.
[22] Pardis, N., & Ebrahimi, R., “Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique,” Materials Science and Engineering: A, Vol. 527, No. 2, pp. 355-360, 2009.
[23] Sedehi, S. M. R., Khosravi, M., & Yaghoubinezhad, Y., “Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion,” Ceramics International, Vol. 47, No. 23, pp. 33180-33190, 2021.
[24] Cengiz, B. "avuz Gokce." Y., Yildiz, N., Aktas, Z. and Calimli, A.,“Characterization of hydroxyapatite nanoparticles,” Colloids and Surfaces A: Physicochem”. Eng. Aspects, Vol. 156, pp. 29-33, 2008.
[25] Taheridoustabad, I., Khosravi, M., & Yaghoubinezhad, Y., “Fabrication of GO/RGO/TiC/TiB2 nanocomposite coating on Ti–6Al–4V alloy using electrical discharge coating and exploring its tribological properties,” Tribology International, Vol. 156, No. 23, pp. 106860, 2021.
[26] Zhang, Y., Chen, F., Zhang, Y., & Du, C., “1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy,” Tribology International, Vol. 146, No. 23, pp. 106135, 2020.
[27] Yaghoubinezhad, Y., & Afshar, A., “Experimental design for optimizing the corrosion resistance of pulse reverse electrodeposited graphene oxide thin film,” Journal of Solid State Electrochemistry, Vol. 19, No. 5, pp. 1367-1380, 2015