نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

2 دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

3 استادیار، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

10.22068/jstc.2020.108526.1553

چکیده

در این پژوهش تولید کامپوزیت درجا و زینتر شده با قوس پلاسما در سیستم Al-V2O5 مورد مطالعه قرار گرفت. بدین منظور پودرهای Al و V2O5 با سه ترکیب (Al-41.94wt%V2O5)، (:Al-22.93wt%V2O5) و (:Al-15.78wt%V2O5) به مدت دو ساعت آسیاکاری و سپس به کمک قوس پلاسما در دمایC ˚ 550تحت تراکم و زینتر قرار گرفت. جهت بررسی دماهای وقوع تحولات فازی از آنالیز حرارتی افتراقی استفاده شد. نمونه‌های زینتر شده با توجه به دمای پیک واکنش‌ها در آنالیز حرارتی افتراقی، به مدت 10 دقیقه از دمای 650 تا C ˚1050 تحت عملیات حرارتی قرار گرفتند و سپس درون کوره تا دمای محیط سرد شدند. در بررسی‌های پراش اشعه ایکس مشخص شد که در نمونه‌ها فازهایVO, α-Al2O3,Al3V,Al6V و Al11V تشکیل شد؛ نمونه‌های پخت‌شده در C˚ 650 بیشترین چگالی را داشتند. با افزایش دما و همچنین افزایش درصد آلومینیوم در مخلوط پودر اولیه چگالی نمونه‌ها به‌علت افزایش تخلخل و حفره‌ کاهش یافت. چگالی‌های اندازه گیری شده در محدوده 2.5 تا g/cm3 3 بود. سختی نمونه‌ها با افزایش دما افزایش و با افزایش درصد آلومینیوم در مخلوط‌پودراولیه‌کاهش‌یافت. سختی نمونه های مورد آزمایش در محدوده 52 تا 123 HV بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Study of the phase transformations in Al-V2O5 composite fabricated by spark plasma sintering process

نویسندگان [English]

  • Elahe sadat Ghavamaddini 1
  • Alireza Mashreghi 2
  • Mahdi Kalantar 2
  • Amir Seifoddimi 3

1 Department of Mineral and Material Engineering, Yazd University, Yazd, Iran

2 Department of Mineral and Material Engineering, Yazd University, Yazd, Iran

3 Department of Mineral and Material Engineering, Yazd University, Yazd, Iran

چکیده [English]

In this research, fabrication of an in-situ composite via spark plasma sintering method in an Al-V2O5 system was investigated. For this purpose, the powders of Al and V2O5 with three combination Al-41.94wt%V2O5, Al- 22.93wt%V2O5 and Al-15.78wt%V2O5 were mixed for 2 hours and then compressed and sintered at 550˚C by spark plasma sintering method. To study the temperatures of occurrence of phase changes was used from differential thermal analysis. spark plasma sintering samples with respect to peak reaction temperatures in differential thermal analysis were subjected to heat treatment for 10 minutes at a temperature range from 650 to 1050 ˚C and then cooled inside the furnace to ambient temperature. According to the X ray diffraction results, it was found that the phases of VO, α-Al2O3, Al3V, Al6V, Al11V were formed in the samples. Samples sintered at 650˚C have a highest density. With increasing temperature and percentage of aluminum in the initial powder mixture, the density of the samples decreased due to increase of porosity and cavity. Measured densities were in the range of 2.5 -3 g/cm3. The hardness of the samples was increased by an increase in temperature and decreased by an increase in the percentage of aluminum in the mixture of the initial powder. Hardness of the tested specimens was in the range of 52 to 123 HV.

کلیدواژه‌ها [English]

  • In-situ composite"
  • " SPS method "
  • '' powder metallurgy'
  • " Metal matrix composites"
[1]Pramod, S. L. Bakshi, S.R. and Murty, B.S. "Aluminum-based cast in situ composites: a review." Journal of Materials Engineering and Performance, Vol. 24, 2185-2207, 2015..‏
[2]Ashnagar, M. Mashreghi, A.R. Kalantar, M., "Production of Al/ (Al2O3+Alxvy) Composite", Iranian Journal of Science and Ceramic Engineering, Vol. 2, No 3, pp. 57-72, 2014.
[3]Koczak, M.J. Premkumar, M.K., "Emerging technologies for the in-situ production of MMCs", Jom, Vol. 45, pp. 44–48, 1993.
[4]Mamnooni, S., Borhani, E., Bovand, D., "In - Situ Synthesis of Aluminum Matrix Composite from Al – NiO System by Mechanical Alloying", Metals and Materials International, Accepted, 2019.
[5]Alizadeh, A., Geraei, M., & Mahoodi, M. R., "In situ fabrication of Al-Al2O3-TiB2 hybrid nanocomposite; Evaluating the effect of TiO2 and B2O3 mechanical milling time on properties of composite created through vortex casting", Materials Research Express, Accepted, 2018.
[6]Chen, C., Lin, C., "In-situ dispersed La oxides of Al6061 composites by mechanical alloying Depa", Journal of Alloys and Compounds, Vol. 775, pp. 1156-1163, 2019.‏
[7]Caballero, E. et al., "In Situ Synthesis of Al-Based MMCs Reinforced with AlN by Mechanical Alloying under NH 3 Gas", materials, Vol. 11 (823), pp. 1–9, 2018.
[8]Alipour, M. and Eslami-Farsani, R., “Investigation of the microstructure and hardness of cast AA7068 nanocomposite reinforced with SiC nanoparticles”, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 461-468, 2019
[9]Arik, H., "Production and characterization of in situ Al4C3 reinforced aluminum-based composite produced by mechanical alloying technique", Materials & Design, Vol. 25, pp. 31–40, 2004.
[10]Jawalkar, C.S. Verma, A.S. and Suri, N.M., "Fabrication of Aluminium Metal Matrix Composites with Particulate Reinforcement: A Review", Materials Today: Proceedings, Vol. 4, pp. 2927–2936, 2017.
[11]Singla, A. Garg, R. Saxena, M., "Microstructure and wear behavior of Al-Al2O3 in situ composites fabricated by the reaction of V2O5 particles in pure aluminum", Green Processing and Synthesis, Vol. 4, pp. 487–497, 2015.
[12]Ashnagar, M. "Study on effectiveparameters in combustion synthesis process and properties of fabricated compositesin an Al-V2O5 system", MSc Thesis, Yazd University, Iran, 2013.
[13]Ren, S. He, X. Qu, X., Humail, I.S. Li, Y., "Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCp/Al composites", Composites Science and Technology, Vol. 67, pp. 2103 -2113, 2007.
[14]Mirarabshahi, F. Mashreghi, A.R., "Fabrication and phases study in Al/(Al2O3 + AlxVy + AlaNib) in situ composite", Iranian Journal of Sience and Technology, Vol. 4, pp. 303–310, 2017.
[15]Yazdian, N. Karimzadeh, F. Enayati, M.H., "In-situ fabrication of Al3V/Al2O3 nanocomposite through mechanochemical synthesis and evaluation of its mechanism", Advanced Powder Technology, Vol. 24, pp. 106–112, 2013.
[16]Anvari, S.Z. Karimzadeh, F. Enayati, M.H., "Synthesis and characterisation of nanostructured Al–Al3V and Al–(Al3V–Al2O3) composites by powder metallurgy", Materials Science and Technology, Vol. 0836, pp. 1–12, 2017.
[17]Holland, T.B. Anselmi-Tamburini, U. Mukherjee, A.K., "Electric fields and the future of scalability in spark plasma sintering", Scripta Materialia, Vol. 69, pp. 117–121, 2013.
[18]Sulima, I. Putyra, P. Hyjek, P. Tokarski, T., "Effect of SPS parameters on densification and properties of steel matrix composites", Advanced Powder Technology, Vol. 26, pp. 1152–1161, 2015.
[19]Zhang, Z. Shen, X. Wang, F. Wei, S. Li, S. Cai, H., "Microstructure characteristics and mechanical properties of TiB/Ti-1.5Fe-2.25Mo composites synthesized in situ using SPS process", Transactions of Nonferrous Metals Society of China, Vol. 23, pp. 2598–2604, 2013.
[20]Zhang, J. Hu, W. Zhang, F. Fu, Z., "(AlN)xMo1−x (x=0.5) composite fabricated by spark plasma sintering (SPS)", International Journal of Refractory Metals and Hard Materials, Vol. 54, pp. 378–382, 2016.
[21]Yang, H. McCormick, P.G., "Mechanochemical reduction of V2O5", journal of solid state chemistry, Vol. 110, pp. 136–141, 1994.
[22]Zhang, D.L. Adam, G. Langdon, A.G., "Phase and microstructural evolution during heating of mechanically milled Al/V205 composite powders", Materials science and technology, Vol. 18, pp. 901–907, 2002.
[23]Omran, A.N.M., "Fabrication and characterization of Al-based in situ composites reinforced by Al3V intermetallic compounds", E3 J. Sci. Res, Vol. 2, pp. 26–34, 2014.
[24]Habashi, F.,“Principle of Extractive Metallurgy”, New York, vol. 3, p. 1479, 1997.
[25]Wagman, D.D. et al., The NBS Tables of Chemical Thermodynamic Properties Selected values for inorganic and C1 and C2 organic substances in SI units, Journal of physical and chemical reference data 1982.
[26]Murray, J.L., "AI-V ( Aluminum-Vanadium )", Bulletin of Alloy Phase Diagrams, Vol. 10, pp. 351–357, 1989.
[27]Klancnik, G. Medved, J. Mrvar, P., "Differential thermal analysis ( DTA ) and differential scanning calorimetry ( DSC ) as a method of material investigation", Materials and Geoenvironmentent, Vol. 57, pp. 127–142, 2010.