نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد کرمانشاه، کرمانشاه

2 استادیار، گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد کرمانشاه، کرمانشاه

10.22068/jstc.2020.113750.1590

چکیده

کامپوزیت‌های لایه‌ای زمینه ‏پلیمری تقویت‌شده با الیاف بلند به ‏علت خصوصیات مناسب کاربردهای ‏بسیار زیادی دارند. از طرف دیگر، ‏برخی خطرات زیست محیطی الیاف ‏مصنوعی در کامپوزیت‌ها، محققان ‏را بر آن داشته تا امکان استفاده از ‏انواع الیاف طبیعی و تجدیدپذیر در ‏ساخت کامپوزیت‌های زمینه ‏پلیمری مورد بررسی قرار گیرد. ‏ساندویچ پنل‌ها از جمله مهمترین ‏ساختارها در صنایع مختلف بشمار ‏می‌روند. در تحقیق حاضر، الیاف ‏گیاهی پنبه و رزین اپوکسی، برای ‏ساخت هسته و پوسته‌های ساندویچ ‏پنل‌ها استفاده شد. امروزه، ‏هسته‌های موجی یک طرفه به وفور ‏در ساخت سازه‌های ساندویچی ‏مورد استفاده قرار می‌گیرند. در این ‏پژوهش، هسته موجی دو طرفه ‏برای ساخت ساندویچ پنل‌های ‏کامپوزیتی تقویت شده با الیاف ‏طبیعی پیشنهاد گردید. به‌ علاوه، ‏برای ارزیابی اثر نوع راستا، انواع ‏مختلفی از هسته‌های موجی یک ‏طرفه شامل عرضی یا طولی با ‏کمان رو به بالا یا پایین در نظر ‏گرفته شدند. برای ساخت قالب ‏هسته‌های موجی، فناوری ساخت ‏افزایشی مورد استفاده قرار گرفت. ‏ساندویچ پنل‌ها تحت بارگذاری ‏خمش سه نقطه قرار گرفتند. نتایج ‏تجربی نشان دادند که ساندویچ ‏پنل‌ها با هسته موجی دو طرفه ‏تحت بارگذاری خمشی نسبت به ‏ساندویچ پنل‌ها با هسته یک طرفه ‏خواص مکانیکی قابل توجهی دارد. ‏به علاوه، نتایج بدست آمده در این ‏تحقیق با ساندویچ پنل‌های متناظر ‏که با استفاده از کامپوزیت‌های ‏شیشه/اپوکسی ساخته شده بودند، ‏مقایسه شد. مشاهده گردید که ‏خواص خمشی ساندویچ پنل‌های ‏تقویت شده با الیاف پنبه دارای ‏استحکام قابل قبولی در مقایسه با ‏ساندویچ پنل‌های تقویت شده با ‏الیاف شیشه هستند. ‏

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Application of cotton/epoxy laminated composites to fabricate the uni- and bi-‎directional cosine corrugated cores sandwich panels ‎

نویسندگان [English]

  • Ehsan Heidari-shahmaleki 1
  • Afshin Zeinedini 2

1 Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

2 Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

چکیده [English]

Polymer matrix laminated ‎composites reinforced by long ‎fibers have many applications due ‎to their appropriate properties. On ‎the other hand, some environmental ‎dangers of artificial fibers in ‎composites have led researchers to ‎consider the possibility of using a ‎variety of natural and renewable ‎fibers in the fabrication of ‎polymeric composites. Sandwich ‎panels are one of the most ‎important structures in different ‎industries. In the present study, the ‎cotton plant fiber and epoxy resin ‎were used to manufacture the core ‎and skins of sandwich panels. ‎Nowadays, uni-directional ‎corrugated cores are widely used in ‎the construction of sandwich ‎structures. In this study, a bi-‎directional corrugated core was ‎proposed to fabricate the sandwich ‎panels made of laminated ‎composites reinforced by natural ‎fibers. Moreover, in order to ‎evaluate the effect of core ‎arrangement, different types of uni-‎directional corrugated cores ‎including longitudinal or transverse ‎with arch upward or downward ‎were considered. Additive ‎manufacturing technology was used ‎to make the core molds. The ‎sandwich panels were subjected to ‎three-point bending loading. ‎Experimental results showed that ‎the sandwich panels with bi-‎directional corrugated core under ‎flexural loading had significant ‎mechanical properties compared to ‎the sandwich panels with uni-‎directional corrugated core. In ‎addition, the results obtained from ‎this study were compared with the ‎corresponding sandwich panels ‎made using glass/epoxy laminated ‎composites. It was found that the ‎flexural properties of the ‎cotton/epoxy sandwich panels were ‎acceptable in comparison with ‎glass/epoxy sandwich panels.‎

کلیدواژه‌ها [English]

  • Laminated composites
  • Natural fibers
  • ‎Sandwich panels
  • Additive Manufacturing
  • ‎Corrugated core
[1]Azarafza, R. Davar, A. and Mahmoodi, A., “Three-point bending test of metal and composite sandwich panels with grid stiffened core,” In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 4, pp. 377-388, 2017.
[2]Surrya Prakash, D., Praveen, D. Kumar, “Natural Fibre Sandwich Composite Panels-Analysis, Testing and Characterisation,” IOSR-JMCE, Vol. 9, pp. 58-64, 2013.
[3]Ahmadi, M. S., Gholami, M., Tavanaie, M. A. and Khajeh Mehrizi, M., “Tensile and flexural properties of epoxy-date palm fiber composites,” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 69-78, 2018.
[4]Moradi, E. Zeinedini, A. and Heidari-Shahmaleki, E., “Mechanical properties of laminated composites reinforced by natural fibers of cotton, wool and kenaf under tensile, flexural and shear loadings,” In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 99-108, 2019.
[5]Mostafa, A., Shankar, K., Morozov, E. V., Experimental, theoretical and numerical investigation of the flexural behaviour of the composite sandwich panels with pvc foam core,” Appl. Compos. Mater., Vol. 21, pp. 661-675, 2014.
[6]Flores-Johnson, E.A., Li, Q.M., “Experimental study of the indentation of sandwich panels with carbon fibre-reinforced polymer face sheets and polymeric foam core,” Compos. Part B, Vol. 42, pp. 1212–1219, 2011.
[7]Torabizadeh, M. A. “Response of aluminum foam sandwiches under low velocity impact”, In Persian, Journal of Science and Technology of Composites, Vol. 05, No. 02, pp. 177-184, 2018.
[8]Safari H., Karevan M., Nahvi H., “Mechanical characterization of natural nanostructured zeolite/polyurethane filled 3D woven glass fiber composite sandwich panels,” Polymer Testing, Vol. 67, pp. 284-294, 2018.
[9]George T., Deshpande V.S., Sharp K., Wadley H.N.G., “Hybrid core carbon fiber composite sandwich panels: Fabrication and mechanical response,” Compos. Struct., Vol. 108, pp. 696–710, 2014.
[10]Zhang J., Qin Q., Wang T.J., “Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores,” Acta Mech., Vol. 224, pp. 759–775, 2013.
[11]Sun G., Huo X., Chen D., Li Q., “Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression,” Mater. Des., Vol. 133, pp. 154–168, 2017.
[12]Rashiddadash, S. sadighi, M. and Dariushi, S., “Experimental and numerical investigation of sandwich panels with bilateral connection under static loading”, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 415-426, 2018.
[13]Zhang P., Cheng Y., Liu J., Li Y., Zhang C., Hou H., Wang C. “Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading,” Compos. Part B, Vol. 105, pp. 67–81, 2016.
[14]Yang J.S., Ma L., Schröder K.-U., Chen Y.-L., Li S., Wu L.-Z., Schmidt Rü., “Experimental and numerical study on the modal characteristics of hybrid carbon fiber composite foam filled corrugated sandwich cylindrical panels,” Polymer Testing, Vol. 68, pp. 8-18, 2018.
[15]Buannic N., Cartraud P., Quesnel T., “Homogenization of corrugated core sandwich panels,” Compos. Struct., Vol. 59, pp. 299–312, 2003.
[16]Carlsson L.A., Nordstrand T.,  Westerlind B. O., “On the Elastic Stiffnesses of Corrugated Core Sandwich,” J. Sandw. Struct. Mater., Vol. 3, pp. 253–267, 2001.
[17]Zangani D., Robinson M., Gibson A. G., “Evaluation of Stiffness Terms for Z-cored Sandwich Panels,” Appl. Compos. Mater., Vol. 14, pp. 159–175, 2007.
[18]Liu J., He W., Xie D., Tao B., “The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures,” Compos. Part B., Vol. 111, pp. 315–331 2017.
[19]Taghipoor, H. and Malekzade Fard, K., “Experimental and numerical study of Energy Absorption in foam filled Trapezoidal core sandwich panels subjected to quasi-static loading”, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 565-574, 2019.
[20]Kooistra G.W., Deshpande V., Wadley H.N.G., “Hierarchical Corrugated Core Sandwich Panel Concepts.” J. Appl. Mech., Vol. pp. 259-268, 2007.
[21]Rejab M.R.M., Cantwell W.J., “The mechanical behaviour of corrugated-core sandwich panels,” Compos. Part B, Vol. 47, pp. 267–277, 2013.
[22]Azadian, M., Hasani, H., Shokrieh, M.M., “Flexural behavior of composites reinforced with innovative 3D integrated weft-knitted spacer fabrics,” J. Ind. Text., Vol. 48, pp. 58-76, 2017.
[23]Gazor, M.S., Rahimi, G.H., Farrokhabadi, A., “The effect of the arrangement of corrugated composite on the R-curve of the sandwich structures with hybrid corrugated/foam core under mode I loading”, Theor. Appl. Fract. Mech., Vol. 96, pp. 326–333, 2018.
[24]Chen, A., Davalos, J.F., “Transverse Shear Including Skin Effect for  Composite Sandwich with Honeycomb Sinusoidal Core,” J. Eng. Mech., Vol. 133, pp. 247, 2007.
[25]Jiang, W., Yang, J.L., “Energy-absorption behavior of a metallic double-sine-wave beam under axial crushing,” Thin-Walled Struct., Vol. 47, pp. 1168–1176, 2009.
[26]Mohammadi Dehabadi, A., Rahimi G.H., Rahmani, R., “Experimental investigation on core shape effect on compressive properties of sandwich structures with composite skins, corrugated composite core and foam,” In Persian, Modares Mechanical Engineering, Vol. 15, No. 4, pp. 51-57, 2015.
[27]Rahimi, G. H., Rahmani, R., “Pitch effect on flexural behavior of sandwich structure with composite skins and a corrugated combinatorial core with trapezoidal geometry,” In Persian, Modares Mechanical Engineering, Vol. 14, No. 5, pp. 194-202, 2014.
[28]Malekinejad Bahabadi, H., Hossein Rahimi, G., Farrokhabadi, A., “Numerical and experimental investigation of skin/core debonding in composite sandwich structures with corrugated core under bending loading,” In Persian, Modares Mechanical Engineering, Vol. 16, No. 6, pp. 52-62, 2016.
[29]Kumar Boorle, R., Mallick, P. K., “Global bending response of composites sandwich plates with corrugated core: Part I: Effect of geometric parameters,” Composite Structures, Vol. 141, pp. 375–388, 2016.
[30]Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam, Annual Book of ASTM Standard, ASTM International, C393, 2016.
[31]Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. Annual Book of ASTM Standard, ASTM International, D3039, 2002.
[32]Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a 45° Laminate, Annual Book of ASTM Standard, ASTM International, D3518, 2001.
[33]Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standard, ASTM International,  D790, 2003.
[34]Daliri, V., Zeinedini, A., “Flexural Behavoiur of the Composite Sandwich Panels with Novel and Regular Corrugated Cores, Applied Composites Material,” Appl. Compos. Mater., Vol. 26, pp. 963-982, 2019.