نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی شیمی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران

2 دانشیار، شیمی، پژوهشکده تبدیل گاز، پژوهشگاه پلیمر و پتروشیمی ایران، تهران

3 دانشیار، شیمی، دانشگاه پیام نور، تهران

4 دکترا، شیمی، دانشگاه پیام نور، تهران

5 دانشیار، مهندسی پلیمر، پژوهشکده مهندسی، پژوهشگاه پلیمر و پتروشیمی ایران، تهران

10.22068/jstc.2019.101240.1505

چکیده

در این پژوهش ابتدا ذرات فریت کبالت- روی ( با فرمول Co0.5Zn0.5Fe2O4) به روش سل ژل خود احتراقی سنتز شدند. صحت انجام سنتز فوق توسط روش های FT-IR و پراش اشعه ایکس با زاویه پهن (WAXD) تایید شد. در آزمون WAXD ذرات، پیک های مربوط به ساختار بلوری اسپینل دیده شد. ذرات مغناطیسی سنتزی، در تهیه کامپوزیت‌های پلی آنیلین / فریت کبالت- روی با نسبت های 1:3، 1:1 و 6:1 به کار گرفته شدند. برای تهیه این کامپوزیت ها، پلیمریزاسیون اکسایشی درجای آنیلین با شروع کننده آمونیوم پرسولفات و در حضور ذرات فریت کبالت- روی صورت گرفت. کامپوزیت های سنتز شده توسط روشهای FT-IR، WAXD و SEM مورد آنالیز قرار گرفتند. از پخش کامپوزیت های پلی آنیلین/ فریت کبالت- روی در ماتریس اپوکسی در درصد وزنی 20%، کامپوزیت های نهایی سنتز شدند. آنالیز TEM پخش مناسب ذرات در مقیاس nm 10-100 را نشان داد، لذا کامپوزیت های سنتزی در مقیاس نانوکامپوزیت به حساب می آیند. خاصیت جذب این کامپوزیت-ها در محدوده فرکانس GHz 8-12 که محدوده رادار محسوب می شود، مورد بررسی قرار گرفت. نتایج نشان داد که در بین مواد سنتز شده، کامپوزیت حاوی پلی-آنیلین/فریت کبالت- روی با نسبت 1 به 1 کمترین میزان جذب، برابر با dB -16 را در فرکانس GHz 11.5 نشان می‌دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis of polyaniline/zinc-cobalt ferrite nanocomposites and their use in the preparation of radar absorber coatings

نویسندگان [English]

  • Seyed Amin Mirmohammadi 1
  • Samahe Sadjadi 2
  • Khadijeh Didehban 3
  • Elham Yarahmadi 4
  • Naeimeh Bahri-laleh 5

1 Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Faculty of Petrochemicals, Gas Conversion Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.

3 Department of Chemistry, Payame Noor University, Tehran, Iran.

4 Department of Chemistry, Payame Noor University, Tehran, Iran.

5 Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.

چکیده [English]

In this research, first Zinc- Cobalt ferrite particles, with Co0.5Zn0.5Fe2O4 formula, was prepared via sol–gel auto-combustion method. The magnetic particles were characterized by WAXD and FT- IR techniques. WAXD analysis exhibited the diffraction peaks of the cubic spinel structure for the synthesized nanoparticles. Then, they were employed in the preparation of PANI/ Co0.5Zn0.5Fe2O4 composites, with 3:1, 1:1 and 1:6 weight ratios, by in situ polymerization of aniline monomer in the presence of proper amount of Co0.5Zn0.5Fe2O4 nano particles and ammonium persulfate as initiator. The synthesized composites were analyzed by FT-IR, SEM and XRD methods. Subsequently, polyaniline/Co0.5Zn0.5Fe2O4 particles were incorporated (in 20 wt. %) in an epoxy resin matrix to produce final nanocomposites. The morphological properties of these composites were investigated by TEM. Based on TEM image, particle sizes between 10-100 nm were found for polyaniline/Co0.5Zn0.5Fe2O4 nano powders. The reflection loss of fabricated nano composites was measured in the radar region, i.e. the frequency range of 8-12 GHz. In the proper amount of 1:1 weight ratio of polyaniline to Co0.5Zn0.5Fe2O4, reflection loss reached its minimum value of -16 dB

کلیدواژه‌ها [English]

  • Ferrite
  • Radar absorber
  • Electromagnetic
  • Polyaniline
  • Conductivity
[1]yarahmadi, E., Bahri, N., Didehban, K., " Polymer Composites as Electromagnetic Wave Absorbers", Basparesh, In Persian, Vol. 6, No, 3, pp. 13-22, 2016.
[2]Bohara, R. A., Yadav, H. M., Thorat, N. D., Mali, S. S., Hong, C. K., Nanaware, S. G. and  Pawar, S. H., “Synthesis of Functionalized Co0.5Zn0.5Fe2O4 Nanoparticles for Biomedical Applications“ ‎J. Magn. Magn. Mater., Vol. 378, pp. 397-401, 2015/03/15/, 2015.
[3]Liu, X.-L., Lu, H.-J. and  Xing, L.-Y., “Morphology and Microwave Absorption of Carbon Nanotube/Bismaleimide Foams“ J Appl Polym Sci, Vol. 131, No. 9, pp. 111-118, 2014.
[4]Zhu, X., Hou, K., Chen, C., Zhang, W., Sun, H., Zhang, G. and  Gao, Z., “Structural-Controlled Synthesis of Polyaniline Nanoarchitectures Using Hydrothermal Method“ High. Perform. Polym., Vol. 27, No. 2, pp. 207-216, 2015.
[5]Tang, J., Ma, L., Huo, Q., Yan, J., Gan, M. and  Xu, F., “Effect of a Constant Magnetic Field (0.4 T) on Electromagnetic Properties of Chiral Polyaniline“ High. Perform. Polym., Vol. 27, No. 3, pp. 312-317,  2015.
[6]Mirmohammadi, S. A., Sadjadi, S. and  Bahri-Laleh, N., “Electrical and Electromagnetic Properties of Cnt/Polymer Composites“  in: R. Rafiee, Carbon Nanotube-Reinforced Polymers, 1st Edition: From Nanoscale to Macroscale, Eds.: Elsevier, 2018.
[7]Aghajari, E., Morady, S., Navid Famili, M. H., Zakiyan, S. E., Golbang, A., " Responses of Polystyrene/MWCNT Nanocomposites to Electromagnetic Waves and the Effect of Nanotubes Dispersion ", In Persian, Iran J Polym Sci Tech., Vol. 27, No. 3, pp. 201-193, 2014.
[8]Bigdilou, B., Eslami-Farsani, M., Ebrahimnezhad-Khaljiri,H., The effect of carbon nanotubes on  high velocity impact behavior of hybrid Kevlar -ultrahigh molecular weight polyethylene fibers composite with interlayer configuration ”, In Persian, Journal of Science and Technology of Composite, 2018, Published online.
[9]Setoodeh, A., Sokhandani, N., Zebarjad, S. M., " Theoretical and experimental study on the effect of multi-walled carbon nanotubes on improving the tensile properties and toughness of Vinyl ester resin " , In Persian, Journal of Science and Technology of Composite, 2018, Published online.
[10]Mirmohammadi, S. A., Nekoomanesh-Haghighi, M., Mohammadian Gezaz, S. and  Bahri-Laleh, N., “Polybutadiene/Polyhedral Oligomeric Silsesquioxane Nanohybrid: Investigation of Various Reactants in Polyesterification Reaction“ Polym. Int., Vol. 65, No. 5, pp. 516-525, 2016.
[11]Zhao, T., Hou, C., Zhang, H., Zhu, R., She, S., Wang, J., Li, T., Liu, Z. and  Wei, B., “Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes“ Sci. Rep., Vol. 4, 2014.
[12]Li, D.-A., Wang, H.-B., Zhao, J.-M. and  Yang, X., “Fabrication and Electromagnetic Characteristics of Microwave Absorbers Containing Ppy and Carbonyl Iron Composite“ Materials Chemistry and Physics, Vol. 130, No. 1–2, pp. 437-441, 2011.
[13]Peng, C.-H., Wang, H.-W., Kan, S.-W., Shen, M.-Z., Wei, Y.-M. and  Chen, S.-Y., “Microwave Absorbing Materials Using Ag–Nizn Ferrite Core–Shell Nanopowders as Fillers“ J. Magn. Magn. Mater., Vol. 284, pp. 113-119, 2004.
[14]Mandal, A. and  Das, C. K., “Effect of Batio3 on the Microwave Absorbing Properties of Co-Doped Ni-Zn Ferrite Nanocomposites“ J. Appl. Polym. Sci., Vol. 131, No. 4, pp. 39926, 2014.
[15]Phang, S. W. and  Kuramoto, N., “Microwave Absorption Property of Polyaniline Nanocomposites Containing TiO2 and Fe3O4 Nanoparticles after FeCl36H2O Treatment“ Polym. Compos., Vol. 31, No. 3, pp. 516-523, 2010.
[16]Akman, O., Durmus, Z., Kavas, H., Aktas, B., Kurtan, U., Baykal, A. and  Sözeri, H., “Effect of Conducting Polymer Layer on Microwave Absorption Properties of Bafe12o19-Tio2 Composite“ physica status solidi (a), Vol. 210, No. 2, pp. 395-402, 2013.
[17]Zhu, Y.-F., Fu, Y.-Q., Natsuki, T. and  Ni, Q.-Q., “Fabrication and Microwave Absorption Properties of BaTiO3 Nanotube/Polyaniline Hybrid Nanomaterials“ Polym. Compos., Vol. 34, No. 2, pp. 265-273, 2013.
[18]Ting, T. H., Jau, Y. N. and  Yu, R. P., “Microwave Absorbing Properties of Polyaniline/Multi-Walled Carbon Nanotube Composites with Various Polyaniline Contents“ Applied Surface Science, Vol. 258, No. 7, pp. 3184-3190, 2012.
[19]Bahri-Laleh, N., Didehban, K., Yarahmadi, E., Mirmohammadi, S. A. and  Wang, G., “Microwave Absorption Properties of Polyaniline/Carbonyl Iron Composites“ Silicon, Vol. 10, No. 4, pp. 1337-1343, 2018.
[20]Didehban, K., Yarahmadia, E., Nouri-Ahangarani, F., Mirmohammadi, S. A. and  Bahri-Laleh, N., “Radar Absorption Properties of Ni0.5Zn0.5Fe2O4/Pani/Epoxy Nanocomposites“ J. Chin. Chem. Soc., Vol. 62, No. 9, pp. 826-831, 2016.
[21]Ma, R. T., Zhao, H. T. and  Zhang, G., “Preparation, Characterization and Microwave Absorption Properties of Polyaniline/Co0.5Zn0.5Fe2O4 Nanocomposite“ Mater. Res. Bull., Vol. 45, No. 9, pp. 1064-1068, 2010.
[22]Hayaty, M., Honarkar, H. and  Beheshty, M., “Curing Behavior of Dicyandiamide/Epoxy Resin System Using Different Accelerators“ Iran. Polym. J., Vol. 22, No. 8, pp. 591-598, 2013.
[23]Yousefi, M. H., Manouchehri, S., Arab, A., Mozaffari, M., Amiri, G. R. and  Amighian, J., “Preparation of Cobalt–Zinc Ferrite (Co0.8zn0.2fe2o4) Nanopowder Via Combustion Method and Investigation of Its Magnetic Properties“ Mater. Res. Bull., Vol. 45, No. 12, pp. 1792-1795, 2010.
[24]Ruiting, M., Yanwen, T., Haitao, Zh., Gang, Zh., and  ZHAO, H., “Synthesis, Characterization and Electromagnetic Studies on Nanocrystalline Co0.5zn0.5fe2o4 Synthesized by Polyacrylamide Gel“ Journal of Materials Science & Technology., Vol. 24, No. 4, pp. 628-632, 2008.
[25]Khorrami, S., Gharib, F., Mahmoudzadeh, G., Sadat Sepehr, S., Sadat Madani, S., Naderfar, N., and  Manie., S., “Synthesis and Characterization of Nanocrystalline Spinel Zinc Ferrite Prepared by Sol-Gel Auto-Combustion Technique“ Int. J. Nano. Dim., Vol. 1, No. 3, pp. 221-224, 2011.
[26]Prasanna, G. D., Jayanna, H. S., Lamani, A. R. and  Dash, S., “Polyaniline/Cofe2o4 Nanocomposites: A Novel Synthesis, Characterization and Magnetic Properties“ Synthetic Metals, Vol. 161, No. 21–22, pp. 2306-2311, 2011.
[27]Mohapatra, S., Rout, S. R., Maiti, S., Maiti, T. K. and  Panda, A. B., “Monodisperse Mesoporous Cobalt Ferrite Nanoparticles: Synthesis and Application in Targeted Delivery of Antitumor Drugs“ J. Mater. Chem., Vol. 21, No. 25, pp. 9185-9193, 2011.