نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مواد و متالورژی، دانشگاه سمنان، سمنان

2 استادیار، گروه مهندسی مواد، دانشکده مهندسی مواد و متالوژی، - دانشگاه سمنان

3 دانشیار، گروه مهندسی مواد، دانشکده مهندسی مواد و متالوژی، دانشگاه سمنان

4 استادیار، دانشکده مهندسی، مجتمع آموزش عالی گناباد، گناباد

10.22068/jstc.2019.105164.1524

چکیده

هدف از این پژوهش مقایسۀ ریزساختار، ریزسختی، مقاومت به سایش، و مقاومت به خوردگی سه کامپوزیت‌ سطحی حاوی نانوذرات سیلیکا، نانوذرات گرافیت و مخلوط نانوذرات سیلیکا و گرافیت تولیدشده به روش اصطکاکی اغتشاشی بر سطح آلیاژ منیزیم AZ31B بود. نتایج، پس از چهار پاس انجام فرایند اصطکاکی اغتشاشی، نشان داد متوسط اندازه دانه برای کامپوزیت حاوی سیلیکا، گرافیت، و مخلوط سیلیکا و گرافیت در ناحیه هم‌زده به ترتیب 82%، 70% و 80% نسبت به آلیاژ منیزیم اولیه کاهش یافت. به‌علاوه، ریزسختی به ترتیب 33%، 18.8% و 20.6% نسبت به آلیاژ منیزیم اولیه افزایش یافت. اگرچه گرافیت، به عنوان یک جامد روانکار و نرم، باعث کاهش سختی شد، نتایج آزمون سایش نشان داد نرخ سایش برای نمونه‌های حاوی گرافیت و مخلوط گرافیت و سیلیکا تقریباً مشابه نمونه حاوی سیلیکاست. بررسی تصاویر TEM نشان داد اندازه دانه‌های فرعی برای نمونه حاوی مخلوط نانوذرات سیلیکا و گرافیت نسبت به نمونه حاوی نانوذرات سیلیکا بیش از 18% کوچکتر است. بر طبق نتایج آزمون خوردگی، جریان خوردگی نمونه حاوی نانوذرات سیلیکا نسبت به آلیاژ اولیه بیش از 89% کاهش یافت و نمونه حاوی مخلوط نانوذرات سیلیکا و گرافیت نجیب‌ترین پتانسیل خوردگی را داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of microstructure, wear resistance, and corrosion behavior of AZ31B/SiO2, AZ31B/graphite, and AZ31B/SiO2/graphite surface composite produced by friction stir processing (FSP)

نویسندگان [English]

  • Mehdi Rezaeian-delouei 1
  • Hassan Abdollah-Pour 2
  • Mohammad Tajally 3
  • Seyyed Mostafa Mousavizade 4

1 Faculty of Materials & Metallurgical Engineering, Semnan University, Semnan, Iran

2 Faculty of Materials & Metallurgical Engineering, Semnan University, Semnan, Iran

3 Faculty of Materials & Metallurgical Engineering, Semnan University, Semnan, Iran

4 Department of Engineering, University of Gonabad, Gonabad, Iran

چکیده [English]

In this research, silica nanoparticles, graphite nanoparticles, and a mixture of silica and graphite nanoparticles were used to fabricate surface composites on AZ31B by the use of friction stir processing (FSP). The results after 4 passes indicated that, in comparison with as-received AZ31B, the mean grain size in the sir zone for AZ31B/SiO2, AZ31B/graphite, and AZ31B/SiO2/graphite decreased about 82%, 70%, and 80% respectively. Furthermore, in comparison with as-received AZ31B, microhardness increased 33%, 18.8%, and 20.6% respectively. Although graphite, as a solid lubricant, decreased hardness, the results of wear test indicated that wear rate of AZ31B/graphite and AZ31B/SiO2/graphite is almost similar to wear rate of AZ31B/SiO2. The investigation of TEM images indicated that the size of sub-grains for AZ31B/SiO2/graphite was 18% smaller than AZ31B/SiO2. Furthermore, the results of the corrosion test indicated that the corrosion current of AZ31B/SiO2 reduced over 89% compared with as-received AZ31B, and AZ31B/SiO2/graphite had the highest corrosion potential.

کلیدواژه‌ها [English]

  • Friction stir processing (FSP)
  • Surface nanocomposite
  • Mechanical behavior
  • Wear test
[1]Kumar, A., Kumar, S. and  Mukhopadhyay, N. K., “Introduction to Magnesium Alloy Processing Technology and Development of Low-Cost Stir Casting Process for Magnesium Alloy and Its Composites“ Journal of Magnesium and Alloys, Vol. 6, No. 3, pp. 245-254, 2018.
[2]Babu, J., Anjaiah, M. and  Mathew, A., “Experimental Studies on Friction Stir Processing of AZ31 Magnesium Alloy“ Materials Today: Proceedings, Vol. 5, No. 2, Part 1, pp. 4515-4522, 2018.
[3]Rathee, S., Maheshwari, S., Siddiquee, A. N. and  Srivastava, M., “A Review of Recent Progress in Solid State Fabrication of Composites and Functionally Graded Systems Via Friction Stir Processing“ Critical Reviews in Solid State and Materials Sciences, Vol. 43, No. 4, pp. 334-366, 2018.
[4]Masroor, H., Janghorban, K. and Danesh manesh, H., “Investigation of microstructure and hardness of surface composite AA5086(H116)/ZrO2 and surface hybrid composite AA5086(H116)/ZrO2/Gr fabricated by friction stir processing,” In persian, Journal of New Materials, Vol. 6, No. 3, pp. 101-114, 2016.
[5]Lu, Y., Li, J., Yang, J. and  Li, X., “The Fabrication and Properties of the Squeeze-Cast Tin/Al Composites“ Materials and Manufacturing Processes, Vol. 31, No. 10, pp. 1306-1310, 2016.
[6]Shi, J., Yan, H., Su, B., Chen, J., Zhu, S. and  Chen, G., “Preparation of a Functionally Gradient Aluminum Alloy Metal Matrix Composite Using the Technique of Spray Deposition“ Materials and Manufacturing Processes, Vol. 26, No. 10, pp. 1236-1241, 2011.
[7]Quazi, M., Fazal, M., Haseeb, A., Yusof, F., Masjuki, H. H. and  Arslan, A., “Laser-Based Surface Modifications of Aluminum and Its Alloys“ Critical Reviews in Solid State and Materials Sciences, Vol. 41, No. 2, pp. 106-131, 2016.
[8]Morisada, Y., Fujii, H., Nagaoka, T. and  Fukusumi, M., “Effect of Friction Stir Processing with SiC Particles on Microstructure and Hardness of AZ31“ Materials Science and Engineering: A, Vol. 433, No. 1–2, pp. 50-54, 2006.
[9]Dinaharan, I. and  Akinlabi, E. T., “Low Cost Metal Matrix Composites Based on Aluminum, Magnesium and Copper Reinforced with Fly Ash Prepared Using Friction Stir Processing“ Composites Communications, Vol. 9, pp. 22-26, 2018.
[10]Mishra, R. S. and  Ma, Z. Y., “Friction Stir Welding and Processing“ Materials Science and Engineering: R: Reports, Vol. 50, No. 1–2, pp. 1-78, 2005.
[11]Lee, C. J., Huang, J. C. and  Hsieh, P. J., “Mg Based Nano-Composites Fabricated by Friction Stir Processing“ Scripta Materialia, Vol. 54, No. 7, pp. 1415-1420, 2006.
[12]Givi, M., Ghasemi, A. H.,  and Abbasi, M., “The effect of friction stir vibration processing on microstructure and mechanical properties of Al5052/SiC surface nano composite,”In persian, Iranian Journal of Manufacturing Engineering, Vol. 6, No. 1, pp. 1-11, 2018.
[13]khodabakhshi, A., Kazemi, Sh. and Ahmadifard, S., “Investigation the mechanical and microstructural propreties of copper surface composite Cu/SiO2  fabricated by friction stir processing,” In persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 426-433, 2018
[14]Yousefpour, H. and Akbari Mousavi, S. A., “Investigations on microstructure, wear behavior and corrosion resistance of brass/graphite composite produced by friction stir processing,” In persian, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 253-260, 2016.
[15]Ahmadifard, S., Shahin, N., Kazemi, Sh., Heidarpour, A. and Shirazi, A., “Fabrication of A5083/SiC surface composite by friction stir processing and its characterization,”In persian, Journal of Science and Technology of Composites, Vol. 2, No. 4, pp. 31-36, 2015.
[16]Asadi, P., Faraji, G. and  Besharati, M. K., “Producing of AZ91/Sic Composite by Friction Stir Processing (Fsp)“ The International Journal of Advanced Manufacturing Technology, Vol. 51, No. 1, pp. 247-260, 2010/11/01, 2010.
[17]Khayyamin, D., Mostafapour, A. and  Keshmiri, R., “The Effect of Process Parameters on Microstructural Characteristics of AZ91/SiO2 Composite Fabricated by Fsp“ Materials Science and Engineering: A, Vol. 559, No. 0, pp. 217-221, 2013.
[18]Azizieh, M. and Boroujerdnia, M., “Feasibilty Study of AZ31/Al2O3 Surface Nanocomposite Fabrication Via Friction Stir Processing,” In persian, Journal of New Materials, Vol. 6, No. 2, pp. 65-78, 2016.
[19]Soleymani, S., Abdollah-zadeh, A. and  Alidokht, S. A., “Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing“ Wear, Vol. 278–279, No. 0, pp. 41-47, 2012.
[20]Ahmadifard, S., Roknian, M., Khodaee, M. and Heidarpour, A., “Fabrication and investigation of microstructutr and mechanical properties of A356-TiO2-Gr surface hybrid nanocomposite by friction stir processing,” In persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 61-68, 2018.
[21]ASTM G99-05, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2005
[22]Azizieh, M., Kokabi, A. H. and  Abachi, P., “Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing“ Materials & Design, Vol. 32, No. 4, pp. 2034-2041, 2011.
[23]Faraji, G. and  Asadi, P., “Characterization of AZ91/Alumina Nanocomposite Produced by FSP“ Materials Science and Engineering: A, Vol. 528, No. 6, pp. 2431-2440, 2011.
[24]Gerlich, A. P., “Critical Assessment: Friction Stir Processing, Potential, and Problems“ Materials Science and Technology, Vol. 33, No. 10, pp. 1139-1144, 2017.
[25]Yu, Z., “Dependence of Microstructure Evolution, Texture, and Mechanical Behavior of a Mg Alloy on Thermo-Mechanical Input During Friction Stir Processing“, 2010.
[26]Devaraju, A., Kumar, A. and  Kotiveerachari, B., “Influence of Addition of Grp/Al2O3p with SiCp on Wear Properties of Aluminum Alloy 6061-T6 Hybrid Composites Via Friction Stir Processing“ Transactions of Nonferrous Metals Society of China, Vol. 23, No. 5, pp. 1275-1280, 2013.
[27]Shanthi, M., Nguyen, Q. B. and  Gupta, M., “Sliding Wear Behaviour of Calcium Containing AZ31B/Al2O3 Nanocomposites“ Wear, Vol. 269, No. 5, pp. 473-479, 2010.
[28]Ma, A. and  Jiang, J., “Bulk Ultrafine-Grained Magnesium Alloys by Spd Processing: Technique, Microstructures and Properties“  in: Magnesium Alloys-Design, Processing and Properties, Eds.: InTech, 2011.
[29]Hamu, G. B., Eliezer, D. and  Wagner, L., “The Relation between Severe Plastic Deformation Microstructure and Corrosion Behavior of AZ31 Magnesium Alloy“ Journal of Alloys and Compounds, Vol. 468, No. 1, pp. 222-229, 2009.
[30]Saikrishna, N., Pradeep Kumar Reddy, G., Munirathinam, B. and  Ratna Sunil, B., “Influence of Bimodal Grain Size Distribution on the Corrosion Behavior of Friction Stir Processed Biodegradable AZ31 Magnesium Alloy“ Journal of Magnesium and Alloys, Vol. 4, No. 1, pp. 68-76, 2016.
[31]Arora, H. S., Singh, H. and  Dhindaw, B. K., “Corrosion Behavior of a Mg Alloy AE42 Subjected to Friction Stir Processing“ Corrosion, Vol. 69, No. 2, pp. 122-135, 2012.