نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مهندسی مکانیک، دانشگاه اصفهان، اصفهان

2 دانشجوی کارشناسی، مهندسی مکانیک، دانشگاه اصفهان، اصفهان

10.22068/jstc.2019.113745.1589

چکیده

مدل‌سازی رسوب ذوب‌شده یکی از روش‌های رایج چاپ سه‌بعدی قطعات پلیمری است که به دلیل توانایی آن برای ساخت قطعات پیچیده کاربردی استفاده از آن در حوزه‌های مختلف صنعتی و کاربردهای مهندسی در حال گسترش است. خواص مکانیکی قطعات تولید شده با این روش به شدت به انتخاب صحیح پارامترهای ساخت بستگی دارد. در این تحقیق، اثر سه پارامتر مهم ساخت از قبیل چگالی پرشدن شبکه‌ی داخلی، سرعت چاپ و ضخامت لایه‌ها بر خواص کششی نمونه‌‌های پرینت شده با PLA مورد بررسی قرار گرفته است. به این منظور نمونه‌های استاندارد با چهار چگالی شبکه داخلی 20، 40، 60 و 80 درصد، دو سرعت چاپ 20 mm/s و 40 mm/s و دو ضخامت لایه 0.1mm و 0.2mm چاپ شده و تحت آزمون کشش شبه‌استاتیک قرار گرفتند. در تمام قطعات چاپ شده، زاویه پرینت شبکه داخلی 45± درجه فرض شده است. نتایج تجربی نشان می‌دهند افزایش چگالی پرشدن شبکه‌ی داخلی تا 60 درصد افزایش قابل ملاحظه‌ای بر روی مدول الاستیسیته، استحکام نهایی و کرنش شکست دارد. اما در چگالی 80 درصد، علی‌رغم داشتن بیشترین نسبت سفتی/وزن و استحکام/وزن، کرنش شکست در مقایسه با نمونه با چگالی 60 درصد 31.9 درصد کاهش داشته است. کاهش سرعت چاپ از 40 mm/s به 20 mm/s منجر به افزایش سفتی، استحکام نهایی و کرنش شکست به ترتیب 7.8 درصد، 9.7 درصد و 1.6 درصد شده است. همچنین مشاهده شد که با کاهش ضخامت لایه از 0.2mm به 0.1mm به ازای افزایش 5.4 درصدی وزن، مدول الاستیسیته 18.7 درصد افزایش و کرنش شکست 53.4 درصد کاهش می‌یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of processing parameters on tensile properties of FDM 3D printed of PLA specimens

نویسندگان [English]

  • Mohammad Heidari-Rarani 1
  • Parisa Sadeghi 2
  • Niloofar Ezati 2

1 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

2 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

چکیده [English]

Fused Depositional Modeling (FDM) is one of the common methods for 3D printing of polymers, which is expanding in various industrial applications and engineering applications due to its ability to make complex parts. The mechanical properties of 3D printed parts strongly depend on the correct selection of processing parameters. In this study, the effect of three important parameters such as infill density, printing speed and layer thickness are investigated on the tensile properties of PLA specimens. To this end, standard specimens with four infill densities of 20%, 40%, 60% and 80%, two speeds of 20 mm/s and 40 mm/s, and two thicknesses of 0.1 mm and 0.2 mm are printed and tested under quasi-static tensile test. In all printed specimens, the print angle is assumed ±45°. Experimental results showed that the increase of infill density up to 60% has significant increase on the modulus of elasticity, ultimate strength, and failure strain. But at infill density of 80% with the highest stiffness to weight and strength to weight ratios, the failure strain has decreased up to 31.9% in comparison to infill density of 60%. Reducing printing speed from 40 mm/s to 20 mm/s causes the increase of stiffness, ultimate strength and failure strain up to 7.8%, 9.7% and 1.6%, respectively. Moreover, it is observed by reducing the layer thickness from 0.2 mm to 0.1 mm, modulus of elasticity increases 18.7% and failure strain decreases 53.4%.

کلیدواژه‌ها [English]

  • Additive manufacturing
  • 3D printing
  • Fused Deposition Modelling (FDM)
  • Tensile properties
[1]Yao, T., Deng, Z., Zhang, K., Li SH., ‘‘A Method to Predict the Ultimate Tensile Strength of 3D Printing Polylactic acid (PLA) Materials with Different Printing Orientations’’ Composites Part B: Engineering, Vol 163, pp. 393-402, 2018.
[2]Popescu, D., Zapciu, A., Amza, C., Baciu, F., Marinescu, R., “FDM Process Parameters Influence Over the Mechanical Properties of Polymer Specimens: A Review” Polymer Testing, Vol 69, pp. 157-166, 2018.
[3]Heidari-Rarani, M., Rafiee-Afrani, M., Zahedi, AM., “Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites”, Composites Part B: Engineering, Vol 175, pp. 107-147, 2019.
[4]Girot, F., Salguero, J., Batista, M., Valerga, A., “Influence of PLA Filament Conditions on Characteristics of FDM Parts” Materials, Vol 11, 2018.
[5]Chua, C.K., Leong, K.F, Lim, C.S., Rapid Prototyping: Principles and Applications, World Scientific, River Edge, 2010.
[6]Es-Said, OS., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, BA., ‘‘Effect of Layer Orientation on Mechanical Properties of Rapid Prototyped Samples’’ Advance Manufacturing Process, Vol. 15, No 1, pp. 22-107, 2000.
[7]Dizon, J., Advincula, R., Chen, Q., Espera A., ‘‘Mechanical Characterization of 3D-Printed Polymers’’ Additive Manufacturing, Vol. 20, pp. 44-67, 2018.
[8]Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., Spence, D. M., “Evaluation of 3D Printing and its Potential Impact on Biotechnology and the Chemical Sciences” Analytical Chemistry, Vol. 86, No. 7, pp. 3240-3253, 2014.
[9]Sood, A.K., Ohdar, R.K., Mahapatra, S.S., ‘‘Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts’’ Material Design, Vol. 31, pp. 287–295, 2010
[10]Sood, K., Ohdar, R.K., Mahapatra, S.S., ‘‘Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement’’ Journal of Advanced Research, Vol 3, pp. 81–90, 2012.
[11]Onwubolu G.C. and Rayegani F., ‘‘Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process’’ International Journal of Manufacturing Engineering., pp. 11–13, 2014
[12]Liu X., Zhang M., S. Li, Peng J., Hu Y., ‘‘Mechanical Property Parametric Appraisal of Fused Deposition Modeling Parts Based on the Gray Taguchi Method’’ The International Journal of Advanced Manufacturing Technology, Vol 89, No 5–8, pp. 2387–2397,2017.
[13]Li, H., Wang, T., Sun, J., Yu, Z., ‘‘The Effect of Process Parameters in Fused Deposition Modelling on Bonding Degree and Mechanical Properties’’ Rapid Prototype Journal, Vol. 24, No. 1, pp. 80–92, 2018.
[14]Fernandez-Vicente, M., Calle, W., Ferrandiz, S., Conejero, A., ‘‘Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing’’ 3D Printing Additive Manufacturing, Vol. 3, No 3, pp. 183–192, 2016.
[15]Álvarez, K.L., Lagos, R.F., Aizpun, M., ‘‘Investigating the Influence of Infill Percentage on the Mechanical Properties of Fused Deposition Modelled ABS Parts’’ Ingeniería e Investigación, Vol. 36, No. 3, pp 110–116, 2016.
[16]Baich, L., Manogharan, G., ‘‘Study of Infill Print Parameters on Mechanical Strength and Production Cost-Time of 3D Printed ABS Parts’’ International Solid Freeform Fabrication Symposium, Austin, TX, pp. 209–218, 2015.
[17]Raney, K., Lani, E., Kalla, D.K., ‘‘Experimental Characterization of the Tensile Strength of ABS Parts Manufactured by Fused Deposition Modeling Process’’ Materials Today Proceedings, Vol. 4, pp. 7956–7961, 2017.
[18]Fernandes, J, Leite, M., M Deus, A., Reis, L., ‘‘Study of the Influence of 3D Printing Parameters on the Mechanical Properties of PLA’’ 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, 14-17 May 2018,
 [19]Torrado, A.R., Roberson, D.A., ‘‘Failure Analysis and Anisotropy Evaluation of 3D Printed Tensile Test Specimens of Different Geometries and Print Raster Patterns’’ Journal of Failure Analysis and Prevention, Vol. 16, No 1, pp. 154–164, 2016.
[20]Ebel, E., Sinnemann, T., ‘‘Fabrication of FDM 3D Objects with ABS and PLA and Determination of their Mechanical Properties’’ RTejournal, 2014
[21]Torres, J., Cotelo, J., Karl, J., Gordon, A.P., ‘‘Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives’’ Journal of the Materials, Vol 67, No 5, pp. 1183–1193, 2015.
[22]Croccolo, D., Agostinis, M. De, Olmi, G., ‘‘Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30’’ Computer Material Science, Vol 79, pp. 506–518, 2013.
[23]Tymrak, B.M., Kreiger, M., Pearce, L.M., ‘‘Mechanical Properties of Components Fabricated with Open-Source 3-D Printers under Realistic Environmental Conditions’’ Material Design, Vol 58, pp. 242–246, 2014.
[24]Gorski, F., Kuczko, W., Wichniarek, R., ‘‘Impact Strength of ABS Parts Manufactured using Fused Deposition Modeling Technology’’ Archives of Mechanics Technology, Vol. 31, No. 1, pp. 1–12, 2014.
[25]Lanzotti, A., Grasso, M., . Staiano, G, Martorelli, M., ‘‘The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA with an Open-source 3D Printer’’ Rapid Prototype, Vol 21, pp. 604–617, 2015.
[26]Torres, J., Cole, M., Owji, A., DeMastry, Z., Gordon, A.P., ‘‘An Approach for Mechanical Property Optimization of Fused Deposition Modeling with Polylactic acid via Design of Experiments’’ Rapid Prototype Journal, Vol 22, No 2, pp. 387–404, 2016.
[27]Chacon, J.M., Caminero, M.A., Garcia-Plaza, E., Nunez, P.J., ‘‘Additive Manufacturing of PLA Structures using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and their Optimal Selection’’ Materials and Design, Vol 124, pp. 143–157, 2017.
[28]Kozior, T. and Kundera, C., ‘‘Evaluation of the Influence of Parameters of FDM Technology on the Selected Mechanical Properties of Models’’ Procedia Engineering, Vol 192, pp. 463–468, 2017.
[29]Mahmood, S., Qureshi, A.J., Goh, K.L., Talamona, D., ‘‘Tensile Strength of Partially Filled FFF Printed Parts: Experimental Results’’ Rapid Prototype Journal, Vol 23, No 1, pp. 122–128, 2017.
[30]Alafaghani, A., Buraaq Alrawi, A., Guzman, A., ‘‘Experimental Optimization of Fused Deposition Modelling Processing Parameters: a Design-for-Manufacturing Approach’’ Procedia Manufacturing, Vol 10, pp. 791 – 803, 2017.
[31]Tronvoll S.A., Elverum C.W., Welo T., ‘‘Dimensional Accuracy of Threads Manufactured by Fused Deposition Modeling’’ Procedia Manufacturing, Vol 26, pp. 763-773, 2018.
[32]Gaihong, WU., Shuqiang, LIU., Husheng, JIA., Jinming, DAI., ‘‘Preparation and Properties of Heat Resistant Polylactic  Acid (PLA)/Nano-SiO2 Composite Filament’’ Journal of Wuhan University of Technology-Mater. Sci,. Vol 31, pp. 164–171, 2016.
[33]ASTM D638–14, ‘‘Standard Test Method for Tensile Properties of Plastics”, 2014.