نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنا ن.

2 کارشناسی ارشد، دانشکده مهندسی هوافضا، دانشگاه سمنان، سمنا ن.

3 کارشناس، شرکت تحقیق، طراحی و تولید موتور ایرانخودرو (ایپکو)، تهرا ن.

4 استادیار، دانشکده مهندسی هوافضا، دانشگاه سمنان، سمنا ن.

10.22068/jstc.2019.97242.1489

چکیده

در این مقاله، عیوب مختلف در کامپوزیت لایه‌ای پایه پلیمری تقویت شده با الیاف کربن تحت بارگذاری کششی، با استفاده از تحلیل ارتعاش، تشخیص داده شده است. لذا از آزمون کشش بر روی نمونه‌های استاندارد کامپوزیتی سوراخ‌دار، براساس استاندارد ASTM-D5766، استفاده شده است. حسگرهای شتاب‌سنج، بر روی نمونه‌های فوق، نصب شده و سیگنال‌های ارتعاشی، داده‌برداری شده‌اند. داده‌های تجربی مربوطه به نمونه‌های رزین خالص و الیاف خالص از روش تبدیل فوریه سریع و سیگنال‌های مربوط به نمونه‌های استاندارد کامپوزیتی سوراخ‌دار، از روش تبدیل بسته موجک تحلیل گردید. در انتها نشان داده شد که تحلیل ارتعاش می‌تواند ابزار مناسبی برای تشخیص سه نوع عیب مانند شکست الیاف، ترک ماتریسی و سایر خرابی‌ها در کامپوزیت‌ها باشد. بر این اساس، بیشترین درصد مکانیزم خرابی در نمونه‌های استاندارد کامپوزیتی، مربوط به خرابی‌های جدایش الیاف از ماتریس، تورق و بیرون زدگی الیاف از ماتریس شد. این نتایج، مطابقت مناسبی با تصاویر میکروسکوپ الکترونی روبشی نیز داشت.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Detection of Different Defects in Carbon Fiber Reinforced Polymer Matrix Laminated Composite under Tension by Vibration Analysis

نویسندگان [English]

  • Mohammad Azadi 1
  • Nezamoddin Raeisi 2
  • Seyed Ashkan Moosavian 3
  • Meysam Shakouri 4

1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran.

2 Faculty of Aerospace Engineering, Semnan University, Semnan, Iran.

3 Engine Tests and Validation Department, Irankhodro Powertrain Company, Tehran, Iran.

4 Faculty of Aerospace Engineering, Semnan University, Semnan, Iran.

چکیده [English]

In this article, different defects in the carbon fiber reinforced polymer matrix laminated composite under tensile loading have been detected by the vibration analysis. For this objective, the tensile test on open-hole composite standard specimens was performed based on the ASTM-D5766 standard. The tensile loading was considered as 2 mm/min, based on the mentioned standard. Acceleration sensors was installed on standard specimens and vibration signals were acquired during tensile loading. In order to detect different defects, in addition to composite standard samples, pure resin and pure fiber specimens were also tested under tensile loading. Signals for pure resin and pure fiber samples were analyzed by the Fourier transform method and signals for open-hole composite standard specimens were analyzed by the wavelet transform approach. Obtained results from the signal analysis showed that the vibration analysis could be a proper method to detect three types of defects in the carbon fiber reinforced polymer matrix laminated composite, including the fiber breakage, matrix cracking and other failures. These other failures were debonding, the delamination and the pull-out. Then also, the maximum percentage of failure mechanisms in the open-hole composite standard samples was due to debonding of fibers from the matrix, the delamination and the pull-out failure. Such these results had an agreement with images from the scanning electron microscopy, which obtained from the fracture surface of standard specimens, after tensile testing.

کلیدواژه‌ها [English]

  • Defects detection
  • Carbon fiber laminated composite
  • Tensile loading
  • Vibration analysis
  • Wavelet transform
[1] Alizadeh, M. Azadi, M. Farrokhabadi, A. and Jafari, S. M., “Investigation of Displacement Amplitude Effect on Failure Mechanisms in Open-hole Laminated Composites under Low-cycle Fatigue Loading Using Acoustic Emission,” In Persian, Modares Mechanical Engineering, Vol. 17, No. 3, pp. 435-445, 2018.
[2] Ghasemi-Ghalebahman, A. Sayar, H. Azadi, M. and Jafari, S. M.,  “Failure Mechanisms in Open-hole Laminated Composites Under Tensile Loading Using Acoustic Emission,” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 143-152, 2018.
[3]   Mohammadi, B. Asl Kamkar, S. and Farrokhabadi, A., “Matrix Cracking and Induced Delamination in Symmetrically Laminated Composites Subjected to Static Loading by Using Multi Scale Damage Mechanics,” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 1, pp.9-24, 2017.
[4]   Madoliat, R. Ghasemi-Ghalebahman, A. and Mohammad-Hanifeh, G., “Effect of Damping on Nonlinear Forced Vibration Response of Graphene-based Nanocomposites,” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 2, pp.141-150, 2017.
[5]   Ashory, M. R. Ghasemi-Ghalebahman, A. and Kokabi, M. J., “Increasing Robustness of Rolution Versus Noise for Identifying Delamination Damage in Composite Plates Using a Hybrid Method,” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 2, pp.125-134, 2017.
[6]   Ashory, M. R. Ghasemi-Ghalebahman, A. and Kokabi, M. J., “Experimental, Numerical and Analytical Study of Energy Absorption in High Velocity Penetration Phenomena on Composite Targets,” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp.11-24, 2018.
[7]  Akbari Shah Khosravi, N. Gholizade, A. Mohammadi, R. Saeedifar, M. and Ahmadi Najafabadi, M., “Quantification of Damage Mechanisms in Holed Composite Laminates by Acoustic Emission and Finite Element Methods,” In Persian, Modares Mechanical Engineering, Vol. 16, No. 6, pp. 345-352, 2016.
[8] Cawley, P. and Adams, R. D., “A Vibration Technique for Non-destructive Testing of Fiber Composite Structures,” Journal of Composite Materials, Vol. 13, No. 2, pp. 161-175, 1979.
[9] Salzano, T.B. Calder, C.A. and DeHart, D. W., “Embedded-strain-sensor Development for Composite Smart Structures,” Experimental Mechanics, Vol. 32, No. 3, pp. 225-229, 1992.
[10] Yan, Y. J. and Yam, L. H., “Online Detection of Crack Damage in Composite Plates Using Embedded Piezoelectric Actuators/sensors and Wavelet Analysis,” Composite Structures, Vol. 58 No. 1, pp. 29-38, 2002.
[11] White, J. R. de Poumeyrol, B. Hale, J. M. and Stephenson, R., “Piezoelectric Paint: Ceramic-polymer Composites for Vibration Sensors,” Journal of Materials Science, Vol. 39 No. 9, pp. 3105-3114, 2004.
[12] Kess, H. R. Sundararaman, S. Shah, C. D. Adams, D. E. Walsh, S. M. Pergantis, C. and Triplett, M., “Identification of Impact Damage in S-2 Glass Composite Missile Casings Using Complementary Vibration and Wave Propagation Approaches,” Experimental Mechanics, Vol. 47, No. 4, pp. 497-509, 2007.
[13] Roy, T. and Chakraborty, D., “Genetic Algorithm Based Optimal Design for Vibration Control of Composite Shell Structures Using Piezoelectric Sensors and Actuators,” International Journal of Mechanics and Materials in Design, Vol. 5, No. 1, pp. 45-60, 2009.
[14] Thakur, H. V. Nalawade, S. M. Saxena, Y. and Grattan, K. T. V., “All-fiber Embedded PM-PCF Vibration Sensor for Structural Health Monitoring of Composite,” Sensors and Actuators A: Physical, Vol. 167, No. 2, pp. 204-212, 2011.
[15] Lakhdar, M. Mohammed, D. Boudjema, L. Rabia, A. and Bachir, M., “Damages Detection in a Composite Structure by Vibration Analysis,” Energy Procedia, Vol. 36, pp. 888-897, 2013.
[16] Huang, B. Kim, H. S. and Youn, B. D., “Active Vibration Control of Smart Composite Laminates with Partial Debonding of Actuator,” International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 4, pp. 831-840, 2015.
[17] Dos Santos, F. L. M. Peeters, B. Van der Auweraer, H.  Goes, L. C. S. and Desmet, W., “Vibration-based Damage Detection for A Composite Helicopter Main Rotor Blade,” Case Studies Mechanical Systems and Signal Processing, Vol. 3, pp. 22-27, 2016.
[18] Arani, A. G. Jafari, G. S. and Kolahchi, R., “Nonlinear Vibration Analysis of Viscoelastic Micro Nano-composite Sandwich Plates Integrated with Sensor and Actuator,” Microsystem Technologies, Vol. 23, NO. 5, pp. 1509-1535, 2017.
 [19] Sapra, G. Sharma, M. and Vig, R., “Active Vibration Control of A Beam Instrumented with MWCNT/epoxy Nano-composite Sensor and PZT-5H Actuator, Robust to Variations in Temperature,” Microsystem Technologies, Vol. 24, No. 3, pp. 1683-1694, 2017.
[20] Zhu, Q. Xu, C. and Yang, G., “Experimental Research on Damage Detecting in Composite Materials with FBG Sensors Under Low Frequency Cycling,” International Journal of Fatigue, Vol. 101, pp. 61-66, 2017.
[21] Loutas, T. H. and Bourikas, A., “Strain Sensors Optimal Placement for Vibration-based Structural Health Monitoring. The effect of Damage on The Initially Optimal Configuration,” Journal of Sound and Vibration, Vol. 410, pp. 217-230, 2017.
[22] Ashory, M. R. Ghasemi-Ghalebahman, A. and Kokabi, M. J., “Damage Detection in Laminated Composite Plates via an Optimal Wavelet Selection Criterion,” Journal of Reinforced Plastics and Composites, Vol. 35, No. 24, pp. 1761-1775, 2016.
[23] ASTM-D5766, “Standard Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates,” ASTM, 2017.
[24] Raeisi, N., “Crack Detection in Composites under Tensile Loading Based on Vibration Analysis,” MSc Thesis, Semnan University, Semnan, Iran, 2018.
[25] Rao, K. R. Kiml, D. N. and Hwang, J. J., “Fast Fourier Transform Algorithms and Applications,” Springer, London, 2010.
[26] Rao, R. M. and Bopardikar, A. S., “Wavelet Transforms: Introduction to Theory and Applications,” Addison Wesley Publishing Company, pp. 1-26, 1998.
[27] Saeedifar, M. Fotouhi, M. Mohammadi, R. Ahmadinajafabadi, M. and Hajikhani, M., “Classification of Damage Mechanisms During Delamination Growth in Sandwich Composites, by Acoustic Emission,” In Persian, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 144-152, 2014.
[28] Sayar, H. Azadi, M. Ghasemi-Ghalebahman, A. and Jafari, S. M., “Clustering Effect on Damage Mechanisms in Open-hole Laminated Carbon/epoxy Composite Under Constant Tensile Loading Rate, Using Acoustic Emission,” Composite Structures, Vol. 204, pp. 1-11, 2018.
[29] Azadi, M. Sayar, H. Ghasemi-Ghalebahman, A. and Jafari, S. M., “Tensile Loading Rate Effect on Mechanical Properties and Failure Mechanisms in Open-hole Carbon Fiber Reinforced Polymer Composite by Acoustic Emission Approach,” Composite Part B, Vol. 158, pp. 448-458, 2019.
[30] Mohammadi, R. Najfabadi, M.A. Saeedifar, M. Yousefi, J. and Minak, G., “Correlation of Acoustic Emission with Finite Element Predicted Damages in Open-hole Tensile Laminated Composites,” Composites Part B: Engineering, Vol. 108, pp. 144-152, 2017.
[31] Refahi Oskouei, A. Heidary, H. Ahmadi, M. and Farajpur, M., “Unsupervised Acoustic Emission Data Clustering for The Analysis of Damage Mechanisms in Glass/polyester Composites,” Materials and Design, Vol. 37, pp. 416-422, 2012.
[32] Mohammadi, R., “Identification Damage Mechanisms in Composites Using Acoustic Emission and Finite Element Methods”, MSc Thesis, Amirkabir University of Technology, Tehran, Iran, 2015.
[33] Fotouhi, M. Sadeghi, S. Jalalvand, M. and Ahmadi, M., “Analysis of the Damage Mechanisms in Mixed-mode Delamination of Laminated Composites Using Acoustic Emission Data Clustering,” Journal of Thermoplastic Composite Materials, Vol. 30, No. 3, pp. 318-340, 2017.
 [34] Talreja, R. and Singh, C. V., “Damage and Failure of Composite Materials,” first edition, New York: Cambridge University press, 2012.