نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران ، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران ، ایران

10.22068/jstc.2018.79561.1413

چکیده

تلاش برای اصلاح نارسایی‌های تئوری‌های تک لایه معادل و تئوری‌های لایه‌ای، سبب ارائه تئوری‌های کلی-محلی ورق شده است. در این مقاله به بررسی پاسخ دینامیکی ورق مستطیلی ساندویچی با رویههای کامپوزیتی تقویت شده با سیم‌های آلیاژ حافظهدار تحت ضربه کمسرعت از طریق ارائه و به کارگیری یک تئوری کلی-محلی هایپربولیک مرتبه بالا جدید پرداخته شده است. برای استخراج نتایجی دقیق، توزیع غیریکنواخت و وابسته به زمان برای فازهای آلیاژ حافظه‌دار و همچنین جابجایی عرضی برای هسته انعطافپذیر در نظر گرفته شده است. به جای استفاده از قانون متداول هرتز از قانون تماس اصلاح شده استفاده گردیده است و قوانین تماس مختلفی برای فازهای بارگذاری و باربرداری در نظر گرفته شده‌ است. آثار سفتی همه لایه‌ها به همراه ضخامت ورق بر سفتی تماس در نظر گرفته شده است. معادلات حاکم المان محدود غیرخطی حاصل شده با استفاده از یک الگوریتم تکرارشونده در هر گام زمانی حل شدند. نتایج تحلیل حاضر با نتایج تجربی مقایسه و صحت نتایج مورد تایید قرار گرفته است. در انتها اثر سیمهای آلیاژ حافظهدار، هسته آگزتیکی، سفتی هسته، ضخامت هسته، خارج از مرکز بودن ضربه و پیشبار دوبعدی بر پاسخ ضربه ورق ساندویچی، مورد بررسی قرار گرفته‌ است. نتایج تحلیل نشان می‌دهند که پیش‌بار کششی، به دلیل کاهش آزادی حرکت کلی ورق و افزایش سفتی ظاهری سازه، باعث افزایش نیروی برخورد و کسر حجمی مارتنزیت و کاهش خیز جانبی و مدت زمان برخورد می‌شود. در حالی که پیشبار فشاری، به دلیل تمایل به ایجاد خیزهای بزرگتر، عکس این نتایج را حاصل مینماید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Dynamic response of composite sandwich plates reinforced by SMA wires under low-velocity impact, based on a new higher-order hyperbolic global–local theory

نویسندگان [English]

  • Seyedhossein Hosseini 1
  • Mohammad Shariyat 2

1 Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

2 Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

چکیده [English]

The attempts to resolve shortcomings of the equivalent single-layer and layerwise theories has resulted in the development of the global-local plate theories. In the present paper, dynamic responses of rectangular sandwich plates with composite face sheets reinforced by SMA wires under low-velocity impact is investigated using a new higher-order hyperbolic global-local theory. In order to obtain accurate results, non-uniform and time-dependent distribution of the phases of the SMA and the transverse compliance of the soft core are considered. A refined contact law is proposed instead of using the traditional Hertz law and different contact laws are considered for the loading and unloading phases. Stiffness effects of all layers along with effect of the plate thickness on contact stiffness are considered. The obtained nonlinear finite element governing equations are solved by making use of an iterative algorithm at each time step. The present results are compared with the experimental results, and the current results and verified. Finally, effects of the SMA wires, presence of the auxetic core, stiffness of the core, thickness of the core, eccentricity of the impact and the in-plane biaxial preloads on impact responses of the sandwich plat are investigated. The results show that the tensile biaxial preloads increase the contact force and martensite volume fraction and decrease the lateral deflection and contact time due to the reduction of the lateral mobility of the plate and increasing the stiffness of the structure whereas compressive biaxial preloads, due to the tendency to create larger deflections, lead to opposite results.

کلیدواژه‌ها [English]

  • Composite sandwich plate
  • Dynamic response
  • SMA wires
  • Core stiffness
  • Biaxial preload
[1] Shokrieh, M. M. Ghajar, M. Salamattalab, M. and Madoliat, R., "Progressive Damage Modeling of Laminated Composites by Considering Simultaneous Effects of Interlaminar and Intralaminar Damage Mechanisms" Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 1-8, 2015. (in Persian)
 [2]  Ghajar, R. Shariyat, M. and Hosseini, S. H., "Nonlinear Numerical Elasticity Analysis of Eccentric Low-velocity Impact of a Rectangular Sandwich Plate with Composite Face Sheets Subjected to Biaxial Preloads" Journal of Solid and Fluid Mechanics, Vol. 5, No. 1, pp. 87-99, 2015. (in Persian)
[3]  Hosseini, S. H. and Khalili, S. M. R., "3D Numerical Analysis of Low-velocity Impact of Rectangular Sandwich Plates with FML Face Sheets" Journal of Energetic Materials, Vol. 10, No. 3, pp. 13-25, 2015. (in Persian)
 [4] Shariyat, M. and Hosseini, S. H., "Accurate Eccentric Impact Analysis of the Preloaded SMA Composite Plates, Based on a Novel Mixed-order Hyperbolic Global–local Theory" Composite Structures, Vol. 124, pp. 140-151, 2015.
[5]  Lei, H. Wang, Z. Zhou, B. Tong, L. and Wang, X., "Simulation and Analysis of Shape Memory Alloy Fiber Reinforced Composite Based on Cohesive Zone Model" Materials & Design, Vol. 40, pp. 138-147, 2012.
[6]  Masuda, A. Ni, Q.-Q. Sone, A. Zhang, R.-X. and Yamamura, T., "Preliminary Characterization and Modeling of SMA-based Textile Composites" Smart Structures and Materials, pp. 94-103, 2004.
[7]  Lau, K.-t. Ling, H.-y. and Zhou, L.-m., "Low Velocity Impact on Shape Memory Alloy Stitched Composite Plates" Smart materials and structures, Vol. 13, No. 2, pp. 364, 2004.
 [8] Shimamoto, A. Ohkawara, H. and Nogata, F., "Enhancement of Mechanical Strength by Shape Memory Effect in TiNi Fiber-reinforced Composites" Engineering Fracture Mechanics, Vol. 71, No. 4, pp. 737-746, 2004.
[9]  Hosseini, S. H. Shariyat, M. and Ghajar, R., "Numerical Simulation of Low-velocity Impact of Rectangular Composite Plates with Embedded SMA Strips, Considering the Instantaneous Local Phase Changes" Journal of Energetic Materials, Vol. 10, No. 2, pp. 53-63, 2015. (in Persian)
 [10] Angioni, S. Meo, M. and Foreman, A., "Impact Damage Resistance and Damage Suppression Properties of Shape Memory Alloys in Hybrid Composites—a Review" Smart Materials and Structures, Vol. 20, No. 1, pp. 013001, 2010.
[11] Ogisu, T. Shimanuki, M. Kiyoshima, S. and Takeda, N., "A Basic Study of CFRP Laminates with Embedded Prestrained SMA Foils for Aircraft Structures" Journal of Intelligent Material Systems and Structures, Vol. 16, No. 2, pp. 175-185, 2005.
[12] Lagoudas, D. C., "Shape Memory Alloys: Modeling and Engineering Applications" Springer Science & Business Media, 2008.
[13] Khalili, S. M. R. and Saeedi. A., "Micromechanics Modeling and Experimental Characterization of Shape Memory Alloy Short Wires Reinforced Composites" Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 1-6, 2015. (in Persian)
[14] Rhaimi Bafrani, I. and Ekhteraei Toussi H., "Frequency Analysis of SMA Composite Beam Resting on Pasternak Elastic Foundation Using Four Engineering Beam Theories" Journal of Science and Technology of Composites, Vol. 3, No. 1, pp. 73-84, 2016. (in Persian)
[15] Khalili, S., Dehkordi, M.B. and Shariyat, M.,  "Modeling and Transient Dynamic Analysis of Pseudoelastic SMA Hybrid Composite Beam" Applied Mathematics and Computation, Vol. 219, No. 18, pp. 9762-9782, 2013.
[16] Khalili, S., Dehkordi, M.B., Carrera, E. and Shariyat, M., "Non-linear Dynamic Analysis of a Sandwich Beam with Pseudoelastic SMA Hybrid Composite Faces Based on Higher Order Finite Element Theory" Composite Structures, Vol. 96, pp. 243-255, 2013.
[17] Ansari, M. Golzar, M. and Behravesh, A. H., "Evaluation of Corrugated Composite Beam Deflection by Shape Memory Alloy Wire" Modares Mechanical Engineering, Vol. 14, No. 8, pp. 49-58, 2014. (in Persian)
 [18] Mojabi, Sh. and Mahdi Kheirikhah, M., "Modeling and Intelligent Control of Vibration of Cantilever Composite Plate Embedded with Shape Memory Alloy Wires" Journal of Science and Technology of Composites, Vol. 4, No. 2, 2017. (in Persian)
[19] Taheri-Behrooz, F. and Kiani, A., "Simulation of Thermo-mechanical Behavior of Glass-epoxy Composites Containing Shape Memory Alloy Under Static Loading" Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 111-122, 2016. (in Persian)
[20] Birman, V. Chandrashekhara, K. and Sain, S., "An Approach to Optimization of Shape Memory Alloy Hybrid Composite Plates Subjected to Low-velocity Impact" Composites Part B: Engineering, Vol. 27, No. 5, pp. 439-446, 1996.
[21] Khalili, S. Shokuhfar, A. Malekzadeh, K. and Ghasemi, F. A., "Low-velocity Impact Response of Active Thin-walled Hybrid Composite Structures Embedded with SMA Wires" Thin-Walled Structures, Vol. 45, No. 9, pp. 799-808, 2007.
[22] Jia, H., "Impact Damage Resistance of Shape Memory Alloy Hybrid Composite Structures" Faculty of the Virginia Polytechnic Institute and State University, 1998.
[23] Meo, M. Antonucci, E. Duclaux, P. and Giordano, M., "Finite Element Simulation of Low Velocity Impact on Shape Memory Alloy Composite Plates" CompositeStructures, Vol. 71, No. 3, pp. 337–342, 2005.
[24] Birman, V., "Stability of Functionally Graded Shape Memory Alloy Sandwich Panels" Smart Materials and Structures, Vol. 6, No. 3, pp. 278, 1997.
[25] Shariyat, M. and Hosseini, S. H., "Eccentric Impact Analysis of Pre-stressed Composite Sandwich Plates with Viscoelastic Cores: a Novel Global–local Theory and a Refined Contact Law" Composite Structures, Vol. 117, pp. 333-345, 2014.
[26] Dariushi, S. and Sadighi, M., "Nonlinear High Order Theory for Analysis of Sandwich Beam with Flexible Core Under Low Velocity Impact" Modares Mechanical Engineering, Vol. 15, No. 9, pp. 381-388, 2015. (in Persian)
[27] Malekzade Fard, K. Payganeh, Gh. and Rashed Saghavaz, F., "Free Vibration and Low Velocity Impact Analysis of Sandwich Plates with Smart Flexible Cores" Modares Mechanical Engineering, Vol. 14, No. 13, pp.191-200, 2015. (in Persian)
[28] Payganeh, Gh.  Malekzade Fard, K. and Rashed  Saghavaz, F., "Effects  of  Important  Geometrical  and  Physical  Parameters  on  Free  Vibration  and  Impact  Force  for  Sandwich  Plates  with  Smart  Flexible  Cores" Modares  Mechanical  Engineering,  Vol. 15, No. 1, pp. 21-30, 2015. (in Persian)
[29] Pandit, M.K., Sheikh, A.H. and Singh, B.N., "An Improved Higher Order Zigzag Theory for the Static Analysis of Laminated Sandwich Plate with Soft Core" Finite Elements in Analysis and Design, Vol. 44, No. 9, pp. 602-610, 2008.
 [30] Brinson, L. C., "One-dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-constant Material Functions and Redefined Martensite Internal Variable" Journal of Intelligent Material Systems and Structures, Vol. 4, No. 2, pp. 229-242, 1993.
[31] Chawla, K. K., "Composite Materials: Mcience and Mngineering" Springer Science & Business Media, 2012.
[32] Abrate, S., "Modeling of Impacts on Composite Structures" Composite Structures, Vol. 51, pp. 129-138, 2001.
[33] Turner, J., "Contact on a Transversely Isotropic Half-space, or Between Two Transversely Isotropic Bodies" International Journal of Solids and Structures, Vol. 16, No. 5, pp. 409-419, 1980.
[34] Swanson, S. R., "Contact Deformation and Stress in Orthotropic Plates" Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 10, pp. 1421-1429, 2005.
[35] Yang, S. and Sun, C., "Indentation Law for Composite Laminates" Composite Materials: Testing and Design (6th Conference), ASTM International, 1982.
[36] Shariyat, M. Mozaffari, A. and Pachenari, M.H., "Damping sources interactions in impact of viscoelastic composite plates with damping treated SMA wires, using a hyperbolic plate theory" Applied Mathematical Modelling, Vol. 43, pp. 421-440, 2017.
[37] Ghaznavi, A. and Shariyat, M., "Non-linear layerwise dynamic response analysis of sandwich plates with soft auxetic cores and embedded SMA wires experiencing cyclic loadings" Composite Structures, Vol. 171, pp. 185-197, 2017.
 [38] Malekzadeh Fard, K. and Rezaei Hassanabadi, M., "Free Vibration and Static Bending Analysis of Curved Sandwich Panel with MagnetoRheological Fluid Layer in Sheets Using Improved Higher Order Sandwich Panel Theory" Journal of Science and Technology of Composites, Vol. 1, No. 2, pp. 49-62, 2015. (in Persian)
[39] Schubel, P. M. Luo, J.-J. and Daniel, I. M., "Low Velocity Impact Behavior of Composite Sandwich Panels" Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 10, pp. 1389-1396, 2005.
[40] Asadi, H. Bodaghi, M. Shakeri, M. and Aghdam M. M., "Nonlinear Dynamics of SMA-Fiber-Reinforced Composite Beams Subjected to a Primary/Secondary-Resonance Excitation" Acta Mechanica, Vol. 226, pp. 437-455, 2015.
[41] Raghavan, J., Bartkiewicz, T.,  Boyko, S., Kupriyanov, M., Rajapakse,  N. and Yu, B. , "Damping, Tensile, and Impact Properties of Superelastic Shape Memory Alloy (SMA) Fiber-reinforced Polymer Composites" Composites Part B: Engineering, Vol. 41, No. 3, pp. 214-222, 2010.
[42] Reddy, J. N., "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis" CRC Press, 2004.
[43] Kleinstreuer, C. Li, Z. Basciano, C. Seelecke, S. and Farber, M., "Computational Mechanics of Nitinol Stent Grafts" Journal of Biomechanics, Vol. 41, No. 11, pp. 2370-2378, 2008.
 [44] Żak, A. J. Cartmell, M. P. and Ostachowicz, W., "A Sensitivity Analysis of the Dynamic Performance of a Composite Plate with Shape Memory Alloy Wires" Composite Structures, Vol. 60, No. 2, pp. 145-157, 2003.
[45] Zhang, R.-x. Ni, Q.-Q. Masuda, A. Yamamura, T. and Iwamoto, M., "Vibration Characteristics of Laminated Composite Plates with Embedded Shape Memory Alloys" Composite Structures, Vol. 74, No. 4, pp. 389-398, 2006.
[46] Birman, V. and Rusnak, I., "Vibrations of Plates with Superelastic Shape Memory Alloy Wires" Journal of Engineering Mathematics, Vol. 78, No. 1, pp. 223-237, 2013.
[47] Birman, V. and Bert, C.W., "Wrinkling of Composite-facing Sandwich Panels Under Biaxial Loading" Journal of Sandwich Structures, Vol. 6, pp. 217-237, 2004.
[48] Liang, Q.Q. Uy, B. Wright, H.D. and Bradford, M.A., "Local Buckling of Steel Plates in Double Skin Composite Panels Under Biaxial Compression and Shear" Journal of Structural Engineering, Vol. 130, pp. 443-451, 2004.