نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران ، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

10.22068/jstc.2018.81651.1426

چکیده

استفاده از تقویت‌کننده یکی از راه‌های افزایش ظرفیت بار کمانش ورق می‌باشد. با این حال به منظور کاهش وزن، طراحی بهینه تقویت‌کننده ضروری می‌باشد. در این تحقیق رفتار کمانش و پس کمانش ورق کامپوزیتی شامل گشودگی به شکل دایره در مرکز آن با سه نوع تقویت‌کننده با هدف دستیابی به بالاترین مقاومت کمانشی در برابر بارهای محوری بررسی گردیده است. تقویت‌کننده صفحه‌ای به شکل ورق نازک مربعی شکل ساخته شده و اطراف گشودگی چسبانده شده است. دو تقویت‌کننده دیگر انواع طولی و حلقوی نامیده می‌شوند. این دو تقویت‌کننده ورق‌های نازکی بوده که عمود بر ورق به ترتیب در راستای اعمال بار فشاری و در راستای محیطی اطراف گشودگی نصب ‌شده‌اند. ورق و تقویت‌کننده‌های مذکور به‌گونه‌ای ساخته ‌شده‌اند که یک کامپوزیت لایه‌ای متعامد و متقارن باشند. جهت مدل‌سازی موارد یاد شده در نرم‌افزار اجزا محدود انسیس آزمون‌های کششی و برشی روی نمونه‌های کامپوزیتی صورت گرفته است تا خواص مکانیکی لازم، مطابق با استانداردهای جهانی به دست آیند. رفتار کمانشی ورق‌های تقویت شده به کمک روش اجزا محدود تحلیل‌شده و نتایج حاصل با نتایج تجربی مطابقت داشته‌اند. نتایج حاصل از این تحقیق نشان می‌دهند که در بین تقویت‌کننده‌های ارائه‌شده، بیشترین بار کمانشی در مقایسه با ورن مربوط به تقویت‌کننده‌ی طولی و کمترین بار کمانشی مربوط به تقویت کننده حلقوی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental and Numerical Investigation of Effects of Stiffener in Buckling Resistance of square laminated composites with Circular Hole

نویسندگان [English]

  • Taghi Shojaee 1
  • Bijan Mohammadi 2
  • Reza Madoliat 2

1 Department of mechanical engineering, Iran University of Science and Technology, Tehran, Iran

2 Department of mechanical engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

Using a stiffener is one of the ways to increase the buckling load capacity of the plate. However, to reduce the weight, the optimum design of the stiffener is necessary. In this study, buckling and post buckling behavior of composite plate with circular cut-out at its center with three types of stiffeners is investigated to achieve a plate with highest resistant to axial loading as buckling load. The Planer stiffener is made in the form of a thin, square layer and is attached around the opening. Two other stiffeners are named as Longitudinal and Ring types. These two stiffeners are thin layers which are attached perpendicular to the compression loading direction and at hoop direction around the openness, respectively. Plate and stiffeners are made as an orthogonal and symmetric layered composite. To model the above items in the Ansys software, tensile and shear tests on composite specimens were performed in accordance with international standards to achieve the required mechanical properties. Buckling behavior of plate with stiffener is analyzed by finite element method and the results are consistent with experimental results. The results of this research show that among the offered stiffeners, the plate with a longitudinal stiffener has maximum buckling load in comparison to the weight and minimum ratio of the buckling load to the weight is related to the ring stiffener.

کلیدواژه‌ها [English]

  • Buckling
  • Orthogonal and symmetric multi-layer plate
  • stiffener
  • circular cutout
  • finite element method
 
[1] B. G. Prusty and S. K. Satsangi, “Finite Element Buckling Analysis    of Laminated Composite Stiffened Shells,” Int. J. Crashworthiness, Vol. 6, pp. 471–484, 2001.
[2] N.-T. T. Ho-Huu V., Do-Thi T.D., Dang-Trung H., Vo-Duy T., “Optimization of Laminated Composite Plates for Maximizing Buckling Load Using Improved Differential Evolution and Smoothed Finite Element Method,” Compos. Struct., 2016.
[3] gurba W. Muc A., “Genetic Algorithms and Finite Element Analysis in Optimization of Composite Structures,” Compos. Struct., Vol. 54, pp. 275– 281, 2001.
[4] W. G. Soper, “Large Deflection of Stiffened Plates,” J. AppL Mech., Vol. 25, pp. 444–8, 1958.
[5] Benthem JP., “The Reduction in Stiffness of Combinations of Rectangular Plates in Compression after Exceeding the Buckling Load,” NLL Rep. S, p. 539, 1959.
[6] S. Yusuff, “Large Deflection Theory for Orthotropic Rectangular Plates Subjected to Edge Compression,” J. appl. Mech., Vol. 19, pp. 446–452, 1952.
[7] J. M. COAN, “Large Deflection Theory for Plates with Small Initial Curvature Loaded in Edge Compression,” J. Appl. Mech., Vol. 18, pp. 143–151, 1951.
[8] P. Jain and A. Kumar, “Postbuckling Response of Square Laminates with a Central Circular / Elliptical Cutout,” Compos. Struct., Vol. 65, pp. 179–185, 2004.
[9] H. R. Ovesy and J. Fazilati, “Buckling and Free Vibration Finite Strip Analysis of Composite Plates with Cutout Based on Two Different Modeling Approaches,” Compos. Struct., Vol. 94, No. 3, pp. 1250–1258, 2012.
[10]  Ghannadpour, S. A. M., Ovesy, H. R., & Zia-Dehkordi, E. (2014). An Exact Finite Strip for the Calculation of Initial Post-Buckling Stiffness of Shear-Deformable Composite Laminated Plates. Composite Structures, 108, 504-513.
[11] H. Assaee, H. R. Ovesy, and M. Hajikazemi, “Thin-Walled Structures A Semi-Energy Finite Strip Non-Linear Analysis of Imperfect Composite Laminates Subjected to End-Shortening,” Thin Walled Struct., Vol. 60, pp. 46–53, 2012.
[12] H. Assaee, M. Hajikazemi, and H. R. Ovesy, “The Effect of Anisotropy on Post-Buckling Behavior of Laminated Plates Using Semi-Energy Finite Strip Method,” Compos. Struct., Vol. 94, No. 5, pp. 1880–1885, 2012.
[13] H. R. Ovesy and H. Assaee, “The effects of bend – twist coupling on the post-buckling characteristics of composite laminated plates using semi-energy finite strip approach,” Thin-Walled Struct., Vol. 45, pp. 209–220, 2007.
[14] Noor A.K., “Buckling And Postbuckling Analyses of Laminated Anisotropic Structures,” Int. J. Numer. Methods Eng., Vol. 27, pp. 383–401, 1989.
[15] A. Köllner and C. Völlmecke, “Buckling and Postbuckling Behavior of Delaminated Composite Struts,” Int. J. Comput. Methods Eng. Sci. Mech., 2017.
[16] Sajjadi, S. H., Salimi-Majd, D., & Ghorabi, M. O. A. (2016). Development of a Brittle Fracture Criterion for Prediction of Crack Propagation Path Under General Mixed Mode Loading. Engineering Fracture Mechanics, 155, 36-48.
[17] Lesiuk, G., Kucharski, P., Correia, J. A., De Jesus, A. M. P., Rebelo, C., & da Silva, L. S. (2017). Mixed Mode (I+ II) Fatigue Crack Growth in Puddle Iron. Engineering Fracture Mechanics, 185, 175-192.
[18] A. Farrokhabadi, and Naghdi Nasab “Micromechanical Study of Fibre- Matrix Debonding and Matrix Cracking Using Cohesive Zone Model and Extended Finite Element Method”, In Persian, Journal of Science and TechNology of Composites, Vol. 3, No. 1, pp. 21-30, 2016.
[19] Mohammadi, B., Salimi-Majd, D. and Hossain Ali-Bakhshi, M.. Analysis of Composite Skin/Stringer Debonding and Failure Under Static Loading Using Cohesive Zone Model. In Persian, Modares Mechanical Engineering, 14(10), pp. 17-25, 2014.
[20] Kalkhoran, A., Davood Salimi-majd, and Bijan Mohammadi. "Fatigue Life Prediction for Adhesively Bonded Root Joint of Composite Wind Turbine Blade Using Cohesive Zone Approach." Recent Advances in Composite Materials for Wind Turbine Blades, pp. 221-32, 2013.
[21] Heidari, M. Salimi-Majd, D. and Mohammadi, B., “Failure Analysis of Composite Wing Adhesive Joints Using 3D Cohesive Interface Element”, In Persian, Journal of Science and Technology  of Composites, Vol. 2, No. 2, pp. 31-40, 2015.
[22] Hosseini-Toudeshky, H., Hosseini, S. and Mohammadi, B., Buckling and Delamination Growth Analysis of Composite Laminates Containing Embedded Delaminations. Applied Composite Materials, 17(2), pp.95-109, 2010.
[23] Hosseini-Toudeshky, H., Hosseini, S. and Mohammadi, B. Delamination Buckling Growth in Laminated Composites Using Layerwise-Interface Element. Composite Structures, 92(8), pp.1846-1856, 2010.
[24] Mohammadi, B. and Shahabi, F., On Computational Modeling of Postbuckling Behavior of Composite Laminates Containing Single and Multiple Through-the-Width Delaminations Using Interface Elements with Cohesive Law. Engineering Fracture Mechanics, 152, pp.88-104, 2016.
[25] A Ghorbanpour Arani, R Moslemian, A Arefmanesh. Compressive Behavior of a Glass/Epoxy Composite Laminates with Single Delamination. Journal of Solid Mechanics, 1(2): 84-90, 2009.
[26] D. Kumar and S. B. Singh, “Effects of Boundary Conditions on Buckling and Postbuckling Responses of Composite Laminate with Various Shaped Cutouts,” Compos. Struct., Vol. 92, No. 3, pp. 769–779, 2010.
[27] G. Lorenzini, D. Helbig, M. D. V Real, E. D. Santos, L. A. Isoldi, and L. A. O. Rocha, “Computational Modeling and Constructal Design Method Applied to the Mechanical Behavior Improvement of Thin Perforated Steel Plates Subject to Buckling,” Vol. 25, No. 2, pp. 197–215, 2016.
[28] Bhardwaj, H., Vimal, J., & Sharma, A. (2015). Study of Free Vibration Analysis of Laminated Composite Plates with Triangular Cutouts. Engineering Solid Mechanics, 3(1), 43-50.
[29] E. Madenci and A. Barut, “Pre- And Postbuckling Response of Curved , Thin , Composite Panels With Cutouts,” Int. J. Numer. Methods Eng., Vol. 37, No. October 1992, pp. 1499–1510, 1994.
[30] M. A. Arbelo and A. Herrmann, “Investigation of Buckling Behavior of Composite Shell Structures with Cutouts,” Appl Compos Mater, 2014.
[31] Faruk Elaldi, Sezgin Alecakir." Damage Tolerance of Stiffened Composite Panels with Cutouts", Department of Mechanical Engineering University of Baskent, 06530 Ankara, Turkey, 2015
[32] Heidari-Rarani, M., Khalkhali-Sharifi, S. S., & Shokrieh, M. M. (2014). Effect of Ply Stacking Sequence on Buckling Behavior of E-glass/Epoxy Laminated Composites. Computational Materials Science, 89, 89-96.
[33] Ghannadpour, S. A. M., Ovesy, H. R., & Zia-Dehkordi, E. (2015). Buckling and Post-Buckling Behaviour of Moderately Thick Plates Using an Exact Finite Strip. Computers & Structures, 147, 172-180.
[34] Taheri-Behrooz, F., Omidi, M., Shokrieh, M. (2016). Experimental and Numerical Examination of the Effect of Geometrical Imperfection on Buckling Load in Axially Compressed Composites Cylinder with and Without Cutout. Modares Mechanical Engineering, 16(6), 367-377. (in Persian)
[35] Taheri-Behrooz, F., Omidi, M., & Shokrieh, M. M. (2017). Experimental and Numerical Investigation of Buckling Behavior of Composite Cylinders with Cutout. Thin-Walled Structures, 116, 136-144.
[36] Ghannadpour, S. A. M., & Shakeri, M. A New Method to Investigate the Progressive Damage of Imperfect Composite Plates Under In-Plane Compressive Load, AUT Journal of Mechanical Engineering, 1(2) (2017) 159-168.
[37] Kamareh, F., Farrokhabadi, A., & Rahimi, G. (2018). Experimental and Numerical Investigation of Skin/Lattice Stiffener Debonding Growth in Composite Panels Under Bending Loading. Engineering Fracture Mechanics.