نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مواد، دانشگاه علم و صنعت ایران، تهران ، ایران

2 دانشیار، مهندسی مواد، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

کامپوزیت­های تشکیل شده از فلزات غیرمشابه در طراحی و ساخت قطعاتی که تحت شرایط نیروی مکانیکی جدی، حرارت و سایش خاص هستند به کار می رود. تولید بوش آلومینیم-برنج به عنوان جفت فلزی کامپوزیتی یکی از این موارد محسوب می­شود. در این تحقیق با استفاده از دستگاه گریز از مرکز عمودی برخی متغیرهای موثر در تولید قطعه استوانه کامپوزیتی آلومینیم-برنج مورد مطالعه قرار گرفت. بدین منظور مذاب آلومینیم با نسبت­های حجمی 5/1 و 5/2 درون بوش برنجی پیش­گرم شده در محدوده دمایی 100-400 درجه­ی سانتی­گراد و در حال دوران با سرعت­های 800 و 1600 دور بر دقیقه ریخته­گری شده و خصوصیات فصل مشترک بین این دو فلز مورد بررسی قرار گرفت. نتایج بررسی­های حاصل از میکروسکوپ الکترونی روبشی (SEM) نشان داد که فصل مشترک حاصله شامل چهار لایه­ی مجزا است. لایه­های متشکله به ترتیب از سمت برنج شامل Al2Cu5Zn4، Al3Cu3Zn، رسوبات Al2Cu توزیع شده در زمینه­ی محلول جامد آلومینیم و نهایتاً ساختار یوتکتیک غیرعادی α-Al/Al2Cu در مجاورت آلومینیم است. اندازه­گیری­های میکروسختی نشان داد که میزان سختی در عرض فصل مشترک از یک روند نزولی پیروی می­کند به گونه­ای که بالاترین سختی مربوط به نواحی مجاور برنج و کم­ترین میزان سختی متعلق به نواحی مجاور آلومینیم ثبت شد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of rotational speeds and heat content on the production of Al- Brass bimetal composite

نویسندگان [English]

  • Morteza Gholami 1
  • Mehdi Divandari 2

1 School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran

2 - School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

Composites made of dissimilar metals are designed and used in components subjected to various condition such as serious mechanical force, heat and erosion. Fabrication of Al- brass hollow cylinder, as a composite bimetallic part, is an example. In this work, Al-brass bimetallic hollow cylinders were produced using vertical centrifugal casting device and effective variables were studied. To achieve this, Al melt at 1.5 and 2.5 melt-to-solid volume ratio was cast into 100-400°C preheated cylindrical brass bush rotating at 800 and 1600 revolutions per minute (rpm) respectively and the interface characteristics were investigated. The results of scanning electron microscope (SEM) showed that the achieved interface consisted of four discrete layers from the brass side, including Al2Cu5Zn4, Al3Cu3Zn, Al2Cu precipitates scattering in aluminum matrix and finally α-Al/Al2Cu anomalous eutectic structure near the aluminum side. Micro hardness measurements showed that the hardness of various presented phases decreases from the brass side to the aluminum side.

کلیدواژه‌ها [English]

  • Aluminum-brass composite
  • metallurgical bonding
  • centrifugal casting
  • interface
[1] Palraj S., Subramanian G., Palanichamy S., "Galvanic Interactions of Aluminium 3004 and α-Brass in Tropical Marine Atmosphere" Journal of Marine Science and Application, Vol. 13, No. 4, pp. 455-461, 2014.
[2] Akbari M., Behnagh R. A., "Dissimilar Friction-Stir Lap Joining of 5083 Aluminum Alloy to CuZn34 Brass" Metallurgical and Materials Transactions B, Vol. 43, No. 5, pp. 1177-1186, 2012.
[3] Zareie Rajani H. R., Esmaeili A., Mohammadi M., Sharbati M., Besharati Givi M. K., "The role of Metal-Matrix Composite development During Friction Stir Welding of Aluminum to Brass in Weld Characteristics, Journal of Materials Engineering and Performance" Vol. 21, No. 11, pp. 2429-2437, 2012.
[4] Esmaeili A., Besharati Givi M. K., Zareie Rajani H. R., "A metallurgical and mechanical study on dissimilar Friction Stir Welding of aluminum 1050 to brass (CuZn30)" Materials Science and Engineering A, Vol. 528, No. 22, pp. 7093-7102, 2011.
[5] Akbarifar M., Divandari M., "Interface Characterization of Aluminum/Brass Bimetal Produced by Compound Casting", The second International and The seventh Joint Conference of iranian Metallurgical engineering and Iranian Foundrymen Scientific Societies, 2013. (in Persianفارسی )
[6] Ershov A. A., Sycheva T. A., Zasoukha P. F., "Reactional Diffusion in Three-layer Aluminum-Brass Bimetal" Metal Science and Heat Treatment, Vol. 19, No. 5, pp. 356-359, 1997.
[7] Fouad Y., "Characterization of High Strenght Stainless Steel/Al/Brass Composite Tri-layered Clad" Transactions of the Indian Institute of Metals, Vol. 67, No. 6, pp. 979-988, 2014.
[8] Timisit R. S., "Interdiffusion at Bimetallic Electrical Interfaces" IEEE Transactions (Components, Hybrids, and Manufacturing Technology), Vol. 9, No. 1, pp. 106-116, 1986.
[9] Timisit R. S., "Electrical Instabilities in Stationary Contacts : Al-Plated-Brass Junctions" IEEE Transactions (Components, Hybrids, and Manufacturing Technology), Vol. 11, No. 1, pp. 43-53, 1988.
[10] Timsit R. S., "Intermetallics Growth at Al/α-Brass Interfaces" Acta Metallurgica, Vol. 33, No. 1, pp. 97-104, 1985.
[11] Timsit R. S., "Electrical Instabilities in Contacts : Al/Al and  Al/Brass junctions" Proceedings of the Thirty Fourth Meeting of the IEEE Holm Conference, pp. 151-165, 1988.
[12] Esmaeili A., Zareie Rajani H. R., Sharbati M., Besharati Givi M. K., Shamanian M., "The role of Rotation Speed on Intermetallic Compounds Formation and Mechanical Behavior of Friction Stir Welded Brass/Aluminum 1050 Couple" Intermetallics, Vol. 19, No. 11, pp. 1711-1719, 2011.
[13] Shojaeefard M., Akbari M., Tahani M,. Farhani F., "Sensitivity Analysis of the Artificial Neural Network Outputs in Friction Stir Lap Joining of Aluminum to Brass" Advances in Materils Science and Engineering, 2013.
[14] Janaki Ram G. D., Robinson C., Yang Y., Stucker B. E., "Use of Ultrasonic Consolidation for Fabrication of Multi-material Structures" Rapid Prototyping Journal, Vol. 13, No. 4, pp. 226-235, 2007.
[15] Frydendahl J. G., "Multilayered Composites of AA3103 and Cu Produced by Acaumulative Roll Bonding (ARB)" Master of science Thesis, Norwegian University of Science and Technology, 2012.
[16] Nasirian N., Ranjbar K., "Microstructure Characterzation and Mechanical properties of Al/brass Composite made via Accumulative roll bonding", In Persian, Iranian Metallurgical Engineering Society & Iranian Foundrymen's Society, 2011.
[17] Hajjari E., Divandari M., Razavi S. H., Homma T., Kamado S., "Intermetallic Compounds and Antiphase Domains in Al/Mg Compound Casting" Intermetallics, Vol. 23, No.1, pp. 182-186, 2012.
[18] Wang G. X., Matthys E. F., "Experimental Determination of  the Interfacial Heat Transfer during Cooling and Solidification of Molten Metal Droplets Impacting on a Metallic Substrate: Effect of Roghness and Superheat" International Journal of Heat and Mass Transfer, Vol. 45, No. 25, pp. 4967-4981, 2002.
[19] Hajjari E., Divandari M., Razavi S. H., Emami S. M., Kamado S., "Estimation of the Transient Interfacial Heat Flux Between Substrate/Melt at the Initiation of Magnesium Solidification on Aluminum Substrates Using the Lumped Capcitance Method" Applied surface science, Vol. 257, No. 11, pp. 5077-5082, 2011.
[20] Jacobson L. A., McKittric J., "Rapid Solidification Processing" Materials Science and Engineering, Vol. 11, No. 8, pp. 355-408, 1994.
[21] Daming X., Limin J., Hengzhi F., "Effects of Centrifugal and Coriolis Forces on the Mold-filling Behavior of Titanium Melts in Vertically Rotating Molds" Research & Development, Vol. 5, No.1, pp. 249-257, 2008.
[22] Regel L. L., Wilcox W. R., "Centrifugal Materials Processing" International Center for Gravity Materials Science and Applications, Clarkson University, Potsdam, 1997.
[23] Watanbe Y., Watanbe S., Matsuura K., "Nickel-Aluminides/Steel Clad Pipe Fabricated by Reactive Centrifugal Casting Method from Liquid Aluminum and Solid Nickel" Metallurgical and Materials Transactions A, Vol. 35, No. 5, pp. 1517-1524, 2003.
[24] Trejo E., "Centrifugal Casting of an Aluminium Alloy" Doctor Of Philosophy Thesis, University of Birmingham, 2011.
[25] Rajan T.P.D, Pillai R.M., Pai B. C., "Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites” Materials Characterization, Vol. 61, No. 10, pp. 923–928, 2010.
[26] Shi-ping W., Chang-Yun L., Jing-Jie G. U., Yan-qing S., Xiu-qiao L., Heng-zhi U., "Numerical Simulation and Experimental Investigation of Two Filling Methods in Vertical Centrifugal Casting" Transactions of Nonferrous Metals Society of China, Vol. 16, No. 5, pp. 1035-1040, 2006.
[27] Sarvari M., Divandari M., "Melt Behavior and Shrinkage Force Effect of Al Melt in Al/Mg Bimetal Casted via Centrifugal Casting", Modares Mechanical Engineering, Vol. 15, pp. 131-138, 2015. (in Persian )
[28] Gholami M., Divandari M., Salehi, M. T., "Experimental Study of Effective Parameters on Production and Mechanical Properties of Al- brass Bimetal Composite", In Persian, Modares Mechanical Engineering, Vol. 16, pp. 170-178, 2016.
[29] Pan J., Yoshida M., Sasaki G., Fukunaga H., "Metal Pipe Joining with Aluminum Alloy by Ultrasonic Insert Casting" Materials and Manufacturing Processes, Vol. 15, No. 6, pp. 867-881, 2000.
[30] Xiong B., Cai C., Lu B., "Effect of Volume Ratio of Liquid to Solid on the Interfacial Microstructure and Mechanical Properties of High Chromium Cast Iron and Medium Carbon Steel Bimetal" Journal of Alloys and Compounds, Vol. 509, No. 23, pp. 6700–6704, 2011.
[31] Xu G., Luo A. A., Chen Y., Sachdev A. K., "Interfacial Phenomena in Magnesium/Aluminum Bi-metallic Castings" Materials Science&Engineering A, Vol. 595, pp. 154-158, 2014.
[32] Raghavan V., "Al-Cu-Zn (Aluminum-Copper-Zinc)" Journal of Phase Equilibria and Diffusion, Vol. 28, No. 2, pp. 183-188, 2007.
[33] Fujikawa S. I., "Interdiffusion between Aluminium and α-Brass" Diffusion in Materials, Vol. 95-98, pp. 611-616, 1993.
[34] Biswas A., Siegel D. J., Wolverton C., Seidman D. N., "Precipitates in Al–Cu Alloys Revisited: Atom-probe Tomographic Experiments and First-Principles Calculations of Compositional Evolution and Interfacial Segregation" Acta Materialia, Vol. 59, No. 15, pp. 6187–6204, 2011.
[35] Shoilock B. A., Grovenor C. R. M., Knowlcs K. M., "Compositional Studies of Ω and Ө’ Precipitates in an Al-Cu-Mg-Ag Alloy" Scripta Metallurgica, Vol. 24, No. 7, pp. 1239-1244, 1990.
[36] Wei B., Herlach D. M., "Rapid solidification of undercooled eutectic and monotectic alloys" Materials Science and Engineering, A, Vol. 173, No. 1, pp. 357 -361, 1993.
[37] Liu X. R., Cao C. D., Weisheng B., "Microstructure Evolution and Solidification Kinetics of Undercooled Co–Ge Eutectic Alloys" Scripta Materialia, Vol. 46, No. 1, pp. 13–18, 2002.
[38] Shiping W., Qin X., Xiang X., "The Solidified Structure and Macrosegregation of Wedge-shaped Titanium Castings Produced by Vertical Centrifugal Casting Process" Advanced Materials Research, Vol. 317-319, pp. 456-459, 2011.
[39] Xiong B., Cai C., Wan H., Lu B., "Fabrication of High Chromium Cast Iron and Medium Carbon Steel Bimetal by Liquid–Solid Casting in Electromagnetic Induction Field" Materials and Design, Vol. 32, No. 5, pp. 2978–2982, 2011.
[40]  Springer H., Szczepaniak A., Raabe D., "On the role of zinc on the formation and growth of intermetallic phases during interdiffusion between steel and aluminium alloys", Acta Materialia, Vol. 96, No.1,  pp. 203–211, 2015. 
[41] Viala J.C., Peronnet M., Barbeau F., Bosselet F., Bouix J., "Interface Chemistry in Aluminium Alloy Castings Reinforced with Iron base Inserts" Composites: Part A, Vol. 33, No. 10, pp. 1417-1420, 2002.
[42] Aguado E., Baquedano A., Uribe U., Fernández-Calvo A. L., Niklas A., "Comparative Study of Different Interfaces of Steel inserts in Aluminium Castings", Materials Science Forum, Vol. 765, pp. 711-715, 2013.
[43] Simsir M., Kumruog˘lu L. C., Özer A., "An investigation into stainless-steel/structural-alloy-steel bimetal produced by shell mould casting", Materials and Design, Vol. 30, No. 2, pp. 264-270, 2009.
[44] Fu H., Xiao Q., Xing J., "A Study of Segregation Mechanism in Centrifugal Cast High Speed Steel Rolls" Materials Science and Engineering A, Vol. 479, No. 1, pp. 253-260, 2008.
[45] Srarkar S., Lohar A. K., Panigrahi S. C., "Vertical Centrifugal Casting of Aluminum Matrix Particle Reinforced Composites" Journal of Reinforced plastics and composites, Vol. 28, pp. 1013-1020, 2009.