نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران .

چکیده

در این مقاله با توجه به اهمیت پدیده پل‌زنی ترک حین رشد تورق در کامپوزیت‌های لایه‌ای تحت مود ترکیبی I/II و به منظور فهم فیزیک مسئله پل‌زنی ترک، ابتدا با انجام آزمایش‌های شکست بین لایه‌ای بر روی نمونه‌های‌ کامپوزیتی و مشاهده سطوح شکست و ناحیه آسیب جلوی نوک تورق بر روی لبه نمونه‌ها با استفاده از میکروسکوپ الکترونی روبشی، به شناسایی و معرفی مهم‌ترین مایکرومکانیزم‌های درگیر حین پدیده پل‌زنی الیاف پرداخته می‌شود. در ادامه، با توجه به پیچیدگی مدل‌های موجود برای پیش‌بینی قوانین پل‌زنی در تورق کامپوزیت‌های لایه‌ای و دشواری تعیین پارامترهای متعدد موجود در آن‌ها، یک روش تقریبی جدید برای تعیین قانون پل‌زنی بر اساس یک مدل پیچیده‌تر مبتنی بر فیزیک ارائه شده است. در این روش، با حفظ مبنای فیزیکی مسئله و از طریق جایگذاری تقریب‌های ساده در توصیف پل‌زنی، به استخراج قوانین پل‌زنی پرداخته شده است. مزیت اصلی روش ارائه شده، دستیابی به قوانین پل‌زنی با استفاده از روابط ساده‌تر و با تعداد پارامترهای موردنیاز کمتر است. در نهایت به منظور ارزیابی صحت و دقت روش، رفتار کشش- جدایش ناحیه پل‌زنی پیش‌بینی شده توسط قانون پل‌زنی تقریبی ارائه شده با منحنی‌های کشش- جدایش تجربی در نسبت ترکیب مودهای مختلف مقایسه خواهد شد.

کلیدواژه‌ها

عنوان مقاله [English]

A novel approximate method for determining mixed mode I/II bridging law of laminated composites

نویسنده [English]

  • Zahra Daneshjoo

Faculty of Mechanical Engineering and Energy, Shahid Beheshti University, Tehran, Iran.

چکیده [English]

This paper has been presented according to the importance of crack bridging in mixed mode I/II delamination of laminated composites and it is aimed to understand the physics of crack bridging. Firstly, the most important micro-mechanisms involved during fiber bridging are introduced. To do this, interlaminar fracture tests have been performed on composite specimens. Also, the fracture surfaces and the damage zone on the edge of the specimens have been observed using a scanning electron microscope (SEM). In the following, due to the complexity of the existing bridging models and the difficulty of determining their various parameters, a novel approximate method has been presented. In this method, which is based on a more complex physics-based model, the bridging laws are extracted by preserving the physics of the problem and considering simple approximations. The main advantage of the proposed method is the achievement of bridging laws using simpler relationships with fewer required parameters. Finally, the validity of the method has been evaluated through a comparison of the traction-separation behavior predicted by the proposed approximate bridging laws with the experimental traction-separation curves in different mode mixities.

کلیدواژه‌ها [English]

  • Bridging law
  • Laminated composite
  • Fracture process zone
  • Delamination
  • Mixed mode I/II loading
[1] Qiao, P. and Chen, Y., “Cohesive Fracture Simulation and Failure Modes of FRP– Concrete Bonded Interfaces,” Theoretical and Applied Fracture Mechanics, Vol. 49, No. 2, pp. 213-225, 2008.
[2] Shokrieh, M. M., Salamat-talab, M., Heidari-Rarani, M., “Numerical analysis of mode I delamination growth in laminated DCB specimens using cohesive zone models,” Modares Mechanical Engineering, Vol. 13, No.1, pp. 38-48, 2013 (In Persian).
[3] Shokrieh, M. M., Zeinedini, A., “Prediction of strain energy release rate of asymmetric double cantilever composite beam using eqvalent lay-up for mixed-mode I/II delamination,” Modares Mechanical Engineering, Vol. 13, No.13, pp. 214-225, 2013 (In Persian)
[4]Hillerborg, A., “Analysis of Fracture by Means of The Fictitious Crack Model, Particularly for Fiber Reinforcement Concrete,” International journal of cement composites, Vol. 2, pp. 177-184, 1980.
[5] Sørensen, B. F. and Kirkegaard, P., “Determination of Mixed Mode Cohesive Laws,” Engineering Fracture Mechanics, Vol. 73, pp. 2642-2661, 2006.
[6] Shokrieh, M. M., Damirchiloo, S., Salamat-talab, M., “Determination of cohesive zone parameters in mode I delamination growth of a double cantilever beam specimen using the inverse method,” Journal of Science and Technology of Composites, Vol. 4, No.1, pp. 83-90, 2017 (In Persian).
[7] Esmaili, A., Taheri-Behrooz, F., “Comparison of numerical and analytical cohesive zone length models in the delamination of composite laminates,” Journal of Science and Technology of Composites, Vol. 7, No.4, pp. 1235-1242, 2021 (In Persian).
[8] Spearing, S. M. and Evans, A. G., “The Role of Fiber Bridging in The Delamination Resistance of Fiber-reinforced Composites,” Acta Metallurgica et Materialia, Vol. 40, No. 9, pp. 2191-2199, 1992.
[9] Kaute, D. A. W., Shercliff, H. R., Ashby, M. F., “Delamination, Fibre Bridging and Toughness of Ceramic Matrix Composites,” Acta Metallurgica et Materialia, Vol. 41, pp. 1959-1970, 1993.
[10] Ivens, J., Albertsen, H., Weavers, M., Verpost, I., Peters, P., “Interlaminar Fracture Toughness of CFRP Influenced by Fibre Surface Treatment: Part 2. Modelling of The Interface Effect,” Composites Science and Technology, Vol. 54, pp. 147-159, 1995.
[11] Evans, A. and Marshall, D., “The Mechanical Behavior of Ceramic Matrix Composites,” Overview No. 85, Acta Metallurgica, Vol. 37, No.10, pp. 2567-2583, 1989.
[12] Wells, G. M., “A Preliminary Investigation into Transverse Fracture of Unidirectional Fibre Composites,” Harwell report AERE-R11494, 1985.
[13] Greenhalgh, E. S., Rogers, C., Robinson, P., “Fractographic Observations on Delamination Growth and The Subsequent Migration Through The Laminate,” Composites Science and Technology, Vol. 69, pp. 2345-2351, 2009.
[14] Riddell, W. T., Ingraffea, R., Wawrzynek, P. A., “Experimental Observations and Numerical Predictions of Three-dimensional Fatigue Crack Propagation,” Engineering Fracture Mechanics, Vol. 58, No. 4, pp. 293-310, 1997.
[15] Hashemi, S., Kinloch, A. J., Williams, J. G., “Mechanics and Mechanisms of Delamination in a Polyether Sulfone-fibre Composite,” Composites Science and Technology, Vol. 37, No. 4, pp. 429-462, 1990.
[16] Sorensen, B. F., Gamstedt., E. K., Østergaard, R. C., Goutianos, S., “Micromechanical Model of Cross-over Fibre Bridging – Prediction of Mixed Mode Bridging Laws,” Mechanics of Materials, Vol. 40, No. 4-5, pp. 220-234, 2008.
[17] Daneshjoo, Z., Shokrieh, M. M., Fakoor, M., “A Micromechanical Model for Prediction of Mixed Mode I/II Delamination of Laminated Composites Considering Fiber Bridging Effects,” Theoretical and Applied Fracture Mechanics, Vol. 94, pp. 46-56, 2018.
[18] Khan, R., “Delamination Growth in Composites under Fatigue Loading,” Ph.D. Thesis, Aerospace Faculty TU Delft Nederland, 2013.
[19] Shokrieh, M. M., Salamat-talab, M., Heidari-Rarani, M., “Effect of interface fiber angle on the R-curve behavior of E-glass/epoxy DCB Specimens,” Theoretical and Applied Fracture Mechanics, Vol. 86, pp. 153-160, 2016.
[20] Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, ASTM International, ASTM D6671-01, West Conshohocken, PA, USA; 2001.
[21] Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, US: ASTM International, ASTM Standard D5528-13, 2013.
[22] Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, US: ASTM International, ASTM Standard D7905/D7905M-14, 2014.
[23] Sutcu, M., “Weibull Statistics Applied to Fiber Failure in Ceramic Composites and Work of Fracture,” Acta Metallurgica, Vol. 37, No. 2, pp. 651-661, 1989.
[24] Thouless, M. D. and Evans, A. G., “Effects of Pull-out on The Mechanical Properties of Ceramic-matrix Composites,” Acta Metallurgica, Vol. 36, No. 3, pp. 517-522, 1988.
[25] Ashby, M. F., Blunt, F. J., Bannister, M., “Flow Characteristics of Highly Constrained Metal Wires,” Acta Metallurgica, Vol. 37, No. 7, pp. 1847-1857, 1989.
[26] Cox B. N. and Marshall, D. B., “Stable and Unstable Solutions for Bridged Cracks in Various Specimens,” Acta Metallurgica et Materialia, Vol. 39, pp. 579-89, 1991.
[27] Bao, G., Suo, Z., “Remarks on Crack Bridging Concepts,” Applied Mechanics Review, Vol. 45, pp. 355-366, 1992.
[28] Weibull, W., “A Statistical Theory of The Strength of Materials,” Proceedings, The Royal Swedish Institute for Engineering Research, Vol. 151, pp. 1-45, 1939.
[29] Weibull, W., “The phenomenom of rupture in solids,” Proceedings, The Royal Swedish Institute for Engineering Research, Vol. 153, pp. 1-55, 1939.
[30] Suo, Z., Bao, G., Fan, B., “Delamination R-curve Phenomena Due to Damage,” Journal of the Mechanics and Physics of Solids, Vol. 40, No. 1, pp. 1-16, 1992.
[31] Mai, Y. W., “Cohesive Zone and Crack-resistance R-curve of Cementitious Materials and Their Fiber-reinforced Composites,” Engineering Fracture Mechanics, Vol. 69, pp. 219-234, 2002.
[32] Sorensen, L., Botsis, J., Gmür, Th., Humbert, L., “Bridging Tractions in Mode I Delamination: Measurements and Simulations,” Composites Science and Technology, Vol. 68, No. 12, pp. 2350-2358, 2008.
[33] Dávila, C. G., Rose, C. A., Camanho, P. P., “A Procedure for Superposing Linear Cohesive Laws to Represent Multiple Damage Mechanisms in The Fracture of Composites,” International Journal of Fracture, Vol. 158, No. 2, pp. 211-223, 2009.
[34] Shokrieh, M. M., Daneshjoo, Z., Fakoor, M., “A Modified Model for Simulation of Mode I Delamination Growth in Laminated Composite Materials,” Theoretical and Applied Fracture Mechanics, Vol. 82, pp. 107-116, 2016.
[35] Shokrieh, M. M., Ghoreishi, S. M., Esmkhani, M., Zhao, Z., “Effects of Graphene Nanoplatelets and Graphene Nanosheets on Fracture Toughness of Epoxy Nanocomposites,” Fatigue & Fracture of Engineering Materials & Structures, 37, No. 10, pp. 1116-1123, 2014.
[36] Ogihara, S. and Koyanagi, J., “Investigation of Combined Stress State Failure Criterion for Glass Fiber/epoxy Interface by The Cruciform Specimen Method,” Composites Science and Technology, Vol. 70, pp. 143-150, 2010.
[37] Godara, A., Gorbatikh, L., Kalink, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A. W., Lomov, S. V., Verpoest, I., “Interfacial Shear Strength of a Glass Fiber/epoxy Bonding in Composites Modified with Carbon Nanotubes,” Composites Science and Technology, Vol. 70, pp. 1346-1352, 2010.
[38] Shokrieh, M. M., Salamat-talab, M., Heidari-Rarani, M., “Effect of Interface Fiber Angle on The R-curve Behavior of E-glass/epoxy DCB Specimens,” Theoretical and Applied Fracture Mechanics, Vol. 86, pp.  153-160, 2016.
[39] Reeder, R., “An Evaluation of Mixed-mode Delamination Failure Criteria,” Technical Report: NASA/TM-1992-104210, NASA Langley Technical Report Server,
[40]Greenhalgh, E. , “Characterisation of Mixed-mode Delamination Growth in Carbon-fiber Composites,” Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London UK, 1998.