نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، ارگان اصلی مواد، پژوهشگاه علوم و فنون هسته‌ای، تهران.

2 استادیار، ارگان اصلی مواد، پژوهشگاه علوم و فنون هسته‌ای، تهران.

10.22068/jstc.2022.551166.1778

چکیده

کامپوزیت‌های زمینه تفلون به‌طور گسترده به‌عنوان مواد آب‌بندی استفاده می‌شوند. این مواد کامپوزیتی با تقویت‌کننده‌های مختلف به‌صورت صنعتی ساخته و عرضه‌شده‌اند. باوجود خواص مطلوب آب‌بندهای تجاری، این مواد به‌طورکلی قابلیت آب‌بندی در شرایط خاص کاری را ندارند و نیاز به طراحی و ساخت آب‌بندهای کامپوزیت زمینه تفلون با تقویت‌کننده‌های جدید می‌باشد. در این مطالعه از پودر اتمیزه آلیاژ اینکونل 625 به‌عنوان فاز تقویت‌کننده برای ساخت کامپوزیت زمینه تفلون استفاده شده است. تأثیر درصد وزنی تقویت‌کننده بر روی خواص مکانیکی و تریبولوژیکی کامپوزیت‌ها بررسی شده است. بعلاوه، از روش شبیه‌سازی دینامیک مولکولی به‌منظور بررسی سایش کامپوزیت استفاده شد. فزودن اینکونل 625 به‌طور قابل‌توجهی مقاومت سایش تفلون را بهبود می‌بخشد. افزودن فاز تقویت‌کننده اینکونل 625 به زمینه تفلون سبب تغییر ساز‌ و کار سایش تفلون از نوع خستگی به نوع چسبنده می‌شود. با بررسی‌های شبیه‌سازی دینامیک مولکولی مشخص شد که علت این امر به سبب انرژی برهمکنش بالا در فصل مشترک تفلون و اینکونل 625 می‌باشد که اجازه نمی‌دهد تفلون به‌سادگی از نمونه جدا شوند. در بین کامپوزیت‌های توسعه‌یافته، کامپوزیت زمینه تفلون تقویت‌شده با 50 درصد وزنی اینکونل 625 بهترین ترکیب از نظر سختی (70 شور D) و نرخ سایش ویژه (4-10 4/7 mm3 / Nm) را داشت. روش ساخت به سهولت قابل استفاده می‌باشد و نمونه‌های ساخته‌شده قابلیت تولید صنعتی را دارند.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of Inconel 625 value on mechanical and tribological properties of PTFE-based composites: Experimental and molecular dynamics simulation studies

نویسندگان [English]

  • Hamid Daneshmand 1
  • Masoud Araghchi 2

1 Leading Material Organization, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

2 Leading Material Organization, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.

چکیده [English]

PTFE-based composites are widely used as sealing materials. These composite materials are industrially manufactured and supplied with various reinforcements. Despite the desirable properties of commercial seals, these materials are generally not capable of sealing in specific working conditions and require the design and construction of PTFE-based composite with new reinforcements. In this study, Inconel 625 alloy powder was used as a reinforcing phase to make the PTFE-based composite. The effect of weight percentage of reinforcement on mechanical and tribological properties of composites has been investigated. In addition, the molecular dynamics simulation was used to investigate the composite wear. Addition of Inconel 625 significantly improves PTFE wear resistance. Addition of Inconel 625 reinforcing phase to PTFE matrix changes the PTFE wear mechanism from fatigue to adhesive type. Molecular dynamics simulation studies have shown that this is due to the high interaction energy at the junction of PTFE and Inconel 625, which does not allow PTFE to be easily separated from the sample. Among the developed composites, PTFE-reinforced composite with 50% by weight Inconel 625 had the best combination in terms of hardness (70 shore D) and specific wear rate (4/710-4 mm3 / Nm). The manufacturing method is easy to use and the manufactured samples are capable of industrial production.

کلیدواژه‌ها [English]

  • PTFE composite
  • Wear
  • Hardness
  • Molecular dynamics simulation
[1] Jisheng, E., and Gawne, D. T., "Tribological performance of bronze-filled PTFE facings for machine tool slideways," Wear, Vol. 176, pp. 195-205, 1994.
[2] Unal, H., Sen, U., and Mimaroglu, A., "An approach to friction and wear properties of polytetrafluoroethylene composite," Materials & design, Vol. 27, pp. 694-699, 2006.
[3] Sawyer, W. G., Freudenberg, K. D., Bhimaraj, P., and Schadler, L. S., "A study on the friction and wear behavior of PTFE filled with alumina nanoparticles," Wear, Vol. 254, No. 5-6, pp. 573-580, 2003.
[4] Tevrüz, T., "Tribological behaviours of bronze-filled polytetrafluoroethylene dry journal bearings," Wear, Vol. 230, No. 1, pp. 61-69, 1999.
[5] Khoddamzadeh, A., Liu, R., and Wu, X., "Novel polytetra-fluoroethylene (PTFE) composites with newly developed Tribaloy alloy additive for sliding bearings," Wear, Vol. 266, No. 7-8, pp. 646-657, 2009.
[6] Wang, Y, and Yan, F., "A study on tribological behaviour of transfer films of PTFE/bronze composites," Wear, Vol. 262, No. 7-8, pp. 876-882, 2007.
[7] Tanaka, K., and Kawakami, S., "Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites," Wear, Vol. 79, No. 2, pp. 221-234, 1982.
[8] Bahadur, S., and Tabor, D., "The wear of filled polytetra-fluoroethylene," Wear, Vol. 98, pp. 1-13, 1984.
[9] Qian-qian, S., and Xian-hua, C., "On the friction and wear behavior of PTFE composite filled with rare earths treated carbon fibers under oil-lubricated condition," Wear, Vol. 260, No. 11-12, pp. 1243-1247, 2006.
[10] Trabelsi, M., Kharrat, M., and Dammak, M., "On the friction and wear behaviors of PTFE based composites filled with MoS2 and/or bronze particles," Transactions of the Indian Institute of Metals, Vol. 69, No. 5, pp. 1119-1128, 2016.
[11] Xian-Hua, C., Xue, Y. J., and Xie, C. Y., "Friction and wear of rare-earth modified glass-fiber filled PTFE composites in dry reciprocating sliding motion with impact loads," Wear, Vol. 253, No. 7-8, pp. 869-877, 2002.
[12] Nak-Ho, S., and Suh, N. P., "Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites," Wear, Vol. 53, No. 1, pp. 129-141, 1979.
[13] Li, F., Hu, K. A., Li, J. L., and Zhao, B. Y., "The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene," Wear Vol. 249, pp. 877-882(2001).
[14] Beckford, S., Wang, Y. A., and Zou, M., "Wear-resistant PTFE/SiO2 nanoparticle composite films," Tribology Transactions, Vol. 54, No. 6, pp. 849-858, 2011.
[15] Sole, B. M., and Ball, A., "On the abrasive wear behaviour of mineral filled polypropylene," Tribology International, Vol. 29, No. 6, pp. 457-465, 1996.
[16] Cho, M. H., and Bahadur, S., "Study of the tribological synergistic effects in nano CuO-filled and fiber-reinforced polyphenylene sulfide composites," Wear, Vol. 258, No. 5-6, pp. 835-845, 2005.
[17] Jiang, Q., Tallury, S. S., Qiu, Y., and Pasquinelli, M. A., "Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites," Carbon, Vol. 67, pp. 440-448, 2014.
[18] Li, Y., Wang, S., Arash, B., and Wang, Q., "A study on tribology of nitrile-butadiene rubber composites by incorporation of carbon nanotubes: Molecular dynamics simulations," Carbon, Vol. 100, pp. 145-150, 2016.
[19] Yang, Z., Guo, Z., Yuan, C., and Bai, X., "Tribological behaviors of composites reinforced by different functionalized carbon nanotube using molecular dynamic simulation," Wear, Vol. 476, pp. 203669, 2021.
[20] ASTM Standard Committee, G 99-05, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, USA, 2005.
[21] ASTM Standard Committee, D2240, Standard Test Method for Rubber Property-Durometer Hardness, ASTM International, USA, 2005.
[22] ASTM Standard Committee, D4894, Standard Specification for Polytetrafluoroethylene (PTFE) Granular Molding and Ram Extrusion Materials, ASTM International, USA, 2007.
[23] ASTM Standard Committee, D792, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, USA, 2013.
[24] Pan D., Fan, B., Qi, X., Yang, Y., and Hao, X., "Investigation of PTFE tribological properties using molecular dynamics simulation," Tribology Letters, Vol. 67, No. 1, pp. 1-10, 2019.
[25] Mollazadeh, M., and Arghavanian, R., "Study of the zirconia particles incorporation effects on the wear resistance and hardness of polytetrafluoroethylene," In Persian, Journal of Science and Technology of Composites Vol. 6, pp.649-656, 2020.
[26] Sujuan, Y. and Xingrong, Z., "Tribological properties of PTFE and PTFE composites at different temperatures," Tribology Transactions, Vol. 57, pp. 382-386, 2014.
[27] Song, J., Lei, H. and Zhao, G., "Improved mechanical and tribological properties of polytetrafluoroethylene reinforced by carbon nanotubes: A molecular dynamics study," Computational Materials Science, 168, pp.131-136, 2019.