نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی ارشد، مهندسی مکانیک، دانشگاه علم و صنعت، تهران.

2 استادیار، مهندسی مکانیک، دانشگاه علم و صنعت، تهران.

چکیده

مواد خودترمیم به‌عنوان یکی از انواع مواد هوشمند در ترمیم و تعمیر وسایل و پیشگیری از خرابی و از کار افتادگی ابزارها، قابلیت استفاده دارند. روش‌های متعددی برای افزایش بازده و تکرار پذیر کردن فرایند خودترمیمی وجود دارد که یکی از آن روش‌ها، ترکیب میکروکپسول‌های خودترمیم با آلیاژهای حافظه‌دار است. هرچند تعدادی پژوهش آزمایشگاهی در این زمینه انجام شده امّا به این روش آن چنان که باید توجه نشده است. در این پژوهش تلاش شده است تا با استفاده از روش شبیه‌سازی اجزای محدود، نحوه عملکرد این ترکیب ارزیابی شود. به این منظور از میکروکپسولی شیشه‌ای در زمینه بتن و آلیاژ حافظه‌دار از جنس نیکل-تیتانیوم استفاده شده است. پس از بررسی نتایج تأثیر سیم‌های آلیاژ حافظه دار بر افزایش حداکثر تنش شکست، کاملاً مشهود بود. با افزودن دو سیم حافظه دار تنش شکست از 1.93 مگاپاسکال به 2.08 مگاپاسکال رسیده است. همچنین اثر مهم‌تر، بستن دهانه‌ی ترک می‌باشد به نحوی که با استفاده از دو سیم حافظه دار، بازشدگی دهانه‌ی ترک از 5 میکرومتر به 0.008 میکرومتر رسیده است. سپس تأثیر شعاع سیم‌های آلیاژ حافظه‌دار و نسبت ضخامت و نسبت حجمی میکروکپسول بر تنش نهایی شکست و عملکرد خودترمیمی بررسی گردیده است. در انتها تأثیر استحکام لایه میانی بر شکست میکروکپسول و تنش نهایی شکست ارزیابی شده است.

کلیدواژه‌ها

عنوان مقاله [English]

A numerical study on crack closure using a combination of self-healing microcapsules and shape memory alloy wires

نویسندگان [English]

  • Mohsen Taheri Boroujeni 1
  • Mohammad Javad Ashrafi 2

1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

Self-healing materials can be used as one of the types of smart materials in recovering and repairing equipment and preventing breakdown and fracture of tools. There are several ways to increase the efficiency and repeatability of the self-healing process, one of which is to combine self-healing microcapsules with shape memory alloys. Although several laboratory studies have been performed in this field, this method has not been given the attention it deserves. In this study, an attempt has been made to evaluate the performance of this compound using the finite element simulation method. For this purpose, used glass microcapsule and Ni-Ti SMA within the concrete matrix. After examining the results, the effect of shape memory alloy wires on increasing the maximum fracture stress was quite obvious. By adding two shape memory wires, the fracture tension has increased from 1.93 MPa to 2.08 MPa. Also, the most important effect is to close the crack opening distance in such a way that using two shape memory wires, the distance of the crack opening has decreased from 5 μm to 0.008 μm. Then, the effect of radius of memory alloy wires and thickness ratio and volume fraction of microcapsules on ultimate fracture stress and self-healing performance was investigated. Finally, the effect of interface strength on microcapsule fracture and ultimate fracture stress is evaluated.

کلیدواژه‌ها [English]

  • Shape memory alloy
  • crack
  • microcapsule
  • self-healing
[1]  Eskandari, J. J., Khani, F. and  Farhadinia, M., “Simulation Reinforced Microcapsules by Carbon Nanotubes Contained in a Self-Healing Capsule-Based Materials“ Journal of Solid Mechanics in Engineering, Vol. 9, No. 3, pp. 493-507, 2016.
[2]  Abdoos, H. and  Seyyedi, A., “Self-Healing Polymer Nanocomposites“ Basparesh, Vol. 8, No. 4, pp. 4-19, 2019.
[3]  Eslami-Farsani, R. and  Ebrahimnezhad-Khaljiri, H., “A Review on Healing and Mechanical Behaviors of Self-Healable Polymer Matrix Composites by Extrinsic Healing Methods“ Journal of Science and Technology of Composites, Vol. 6, No. 4, pp. 549-570, 2020.
[4]  White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S., Brown, E. N. and  Viswanathan, S., “Autonomic Healing of Polymer Composites“ Nature, Vol. 409, No. 6822, pp. 794-797, 2001.
[5]  Khalili, S. M. R., Zarei, M. and  Eslami-Farsani, R., “Experimental Study of the Mechanical Behavior of Self-Healing Polymer Composite under Heating Cycles“ Journal of Science and Technology of Composites, Vol. 6, No. 2, pp. 183-189, 2019.
[6]  Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S. and  White, S. R., “Self-Healing Materials with Microvascular Networks“ Nature materials, Vol. 6, No. 8, pp. 581-585, 2007.
[7]  Brown, E. N., White, S. R. and  Sottos, N. R., “Microcapsule Induced Toughening in a Self-Healing Polymer Composite“ Journal of Materials Science, Vol. 39, No. 5, pp. 1703-1710, 2004.
[8]  Gilabert, F., Garoz, D. and  Van Paepegem, W., “The Role of the Bonding Interface in Encapsulated Self-Healing Cementitious Materials,“ in Proceeding of  https://www.researchgate.net/publication/267777376,
[9]  Gilabert, F., Garoz, D. and  Van Paepegem, W., “Stress Concentrations and Bonding Strength in Encapsulation-Based Self-Healing Materials“ Materials & Design, Vol. 67, pp. 28-41, 2015.
[10] Gilabert, F., Van Tittelboom, K., Tsangouri, E., Van Hemelrijck, D., De Belie, N. and  Van Paepegem, W., “Determination of Strength and Debonding Energy of a Glass-Concrete Interface for Encapsulation-Based Self-Healing Concrete“ Cement and concrete composites, Vol. 79, pp. 76-93, 2017.
[11] Tsangouri, E., Gilabert, F. A., De Belie, N., Van Hemelrijck, D., Zhu, X. and  Aggelis, D. G., “Concrete Fracture Toughness Increase by Embedding Self-Healing Capsules Using an Integrated Experimental Approach“ Construction and Building Materials, Vol. 218, pp. 424-433, 2019.
[12] Tsangouri, E., Gilabert Villegas, F. A., Aggelis, D., De Belie, N. and  Van Hemelrijck, D., “Concrete Fracture Energy Increase by Embedding Capsules with Healing Ability: The Effect of Capsules Nature“ in 2nd International RILEM/COST Conference on Early Age Cracking and Serviceability in Cement-based Materials and Structures-EAC2, 2017.
[13] Gilabert, F., Garoz, D. and  Van Paepegem, W., “Macro-and Micro-Modeling of Crack Propagation in Encapsulation-Based Self-Healing Materials: Application of Xfem and Cohesive Surface Techniques“ Materials & Design, Vol. 130, pp. 459-478, 2017.
[14] Gómez, D. G., Gilabert, F., Allaer, K., Hillewaere, X., Du Prez, F., Tsangouri, E., Van Hemelrijck, D. and  Van Paepegem, W., “Crack Propagation in Micro-Encapsulated Polymer for Self-Healing: Numerical Modelling and Experimental Validation“ in 16th European Conference on Composite Materials 2014, 2014.
[15] Gilabert, F., Garoz, D. and  Van Paepegem, W., “Numerical Study of Transitional Brittle-to-Ductile Debonding of a Capsule Embedded in a Matrix,“ Composite Interfaces, Vol. 24, No. 1, pp. 69-84, 2017.
[16] Gao, C., Ruan, H., Yang, C. and  Wang, F., “Investigation on Microcapsule Self‐Healing Mechanism of Polymer Matrix Composites Based on Numerical Simulation,“ Polymer Composites, pp. 1-13, 2021.
[17] Burton, D., Gao, X. and  Brinson, L., “Finite Element Simulation of a Self-Healing Shape Memory Alloy Composite,“ Mechanics of Materials, Vol. 38, No. 5-6, pp. 525-537, 2006.
[18] Zhu, P., Cui, Z., Kesler, M. S., Newman, J. A., Manuel, M. V., Wright, M. C. and  Brinson, L. C., “Characterization and Modeling of Three-Dimensional Self-Healing Shape Memory Alloy-Reinforced Metal-Matrix Composites,“ Mechanics of materials, Vol. 103, pp. 1-10, 2016.
[19] Hassan, M., Mehrpouya, M., Emamian, S. and  Sheikholeslam, M., “Review of Self-Healing Effect on Shape Memory Alloy (Sma) Structures,“ in Advanced Materials Research, 2013, pp. 87-92.
[20] Gao, X., Qiao, R. and  Brinson, L. C., “Phase Diagram Kinetics for Shape Memory Alloys: A Robust Finite Element Implementation,“ Smart Materials and Structures, Vol. 16, No. 6, pp. 2102-2115, 2007.
[21] Saeedi, A. and  Shokrieh, M. M., “A Novel Self-Healing Composite Made of Thermally Reversible Polymer and Shape Memory Alloy Reinforcement,“ Journal of Intelligent Material Systems and Structures, Vol. 30, No. 10, pp. 1585-1593, 2019.
[22] Kirkby, E., Michaud, V., Månson, J.-A., Sottos, N. and  White, S., “Performance of Self-Healing Epoxy with Microencapsulated Healing Agent and Shape Memory Alloy Wires,“ Polymer, Vol. 50, No. 23, pp. 5533-5538, 2009.
[23] Bonilla, L., Hassan, M. M., Noorvand, H., Rupnow, T. and  Okeil, A., “Dual Self-Healing Mechanisms with Microcapsules and Shape Memory Alloys in Reinforced Concrete,“ Journal of Materials in Civil Engineering, Vol. 30, No. 2, pp. 04017277, 2018.
[24] Auricchio, F. and  Petrini, L., “A Three‐Dimensional Model Describing Stress‐Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary Value Problems,“ International journal for numerical methods in engineering, Vol. 61, No. 6, pp. 807-836, 2004.
[25] Ashrafi, M., Arghavani, J., Naghdabadi, R. and  Auricchio, F., “A Three-Dimensional Phenomenological Constitutive Model for Porous Shape Memory Alloys Including Plasticity Effects“ Journal of Intelligent Material Systems and Structures, 2015.
[26] Ashrafi, M. J., “Transformation and Plasticity of Shape Memory Alloy Structures: Constitutive Modeling and Finite Element Implementation“ Journal of Materials Engineering and Performance, Vol. 29, No. 8, pp. 5515-5524, 2020.
[27] Alinejad, Z., Khakzad, F., Shirin-Abadi, A. R., Ghasemi, M. and  Mahdavian, A. R., “Preparation of Melamine-Formaldehyde Microcapsules Containing Hexadecane as a Phase Change Material: The Effect of Surfactants Type and Concentration,“ Science and Technology, Vol. 26, No. 1, pp. 33-44, 2013.
[28] Mauludin, L. M., Zhuang, X. and  Rabczuk, T., “Computational Modeling of Fracture in Encapsulation-Based Self-Healing Concrete Using Cohesive Elements,“ Composite Structures, Vol. 196, pp. 63-75, 2018.
[29] Arce, G. A., Hassan, M. M., Mohammad, L. N. and  Rupnow, T., “Self-Healing of Sma and Steel-Reinforced Mortar with Microcapsules,“ Journal of Materials in Civil Engineering, Vol. 31, No. 2, pp. 04018366, 2019.
[30] Brinson, L. and  Lammering, R., “Finite Element Analysis of the Behavior of Shape Memory Alloys and Their Applications,“ International Journal of solids and structures, Vol. 30, No. 23, pp. 3261-3280, 1993.
[31] Rohatgi, P., “Al-Shape Memory Alloy Self-Healing Metal Matrix Composite,“ Materials Science and Engineering: A, Vol. 619, pp. 73-76, 2014.
[32] Aghamirzadeh, G. R., Khalili, S., Eslami‐Farsani, R. and  Saeedi, A., “Experimental Investigation on the Smart Self‐Healing Composites Based on the Short Hollow Glass Fibers and Shape Memory Alloy Strips,“ Polymer Composites, Vol. 40, No. 5, pp. 1883-1889, 2019.
[33] Xue, Z., Huang, Y. and  Li, M., “Particle Size Effect in Metallic Materials: A Study by the Theory of Mechanism-Based Strain Gradient Plasticity“ Acta Materialia, Vol. 50, No. 1, pp. 149-160, 2002.
[34] Lei, H., Wang, Z., Zhou, B., Tong, L. and  Wang, X., “Simulation and Analysis of Shape Memory Alloy Fiber Reinforced Composite Based on Cohesive Zone Model,“ Materials & Design, Vol. 40, pp. 138-147, 2012.
[35] Fazlollah-Poor, M., Eslami-Farsani, R. and  Aghamohammadi, H., “Experimental Investigation of the Effect of Shape Memory Alloy Wire Embedding on the Low-Velocity Impact Behavior of Fiber Metal Laminates Composites at Different Temperatures,“ Journal of Science and Technology of Composites, Vol. 7, No. 3, pp. 1057-1063, 2020.
[36] Ananchaperumal, V. and  Vedantam, S., “Formation and Evolution of Microstructure in Shape Memory Alloy Wire Reinforced Composites,“ Transactions of the Indian Institute of Metals, Vol. 74, No. 10, pp. 2499-2510, 2021.