نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، مهندسی مکانیک، دانشگاه فنی و حرفه ای، تهران.

2 دانشیار، مهندسی مکانیک، دانشگاه تبریز، تبریز.

3 دانشیار، شیمی آلی و بیوشیمی، دانشگاه تبریز، تبریز.

چکیده

این پژوهش در تلاش است تا با بکارگیری روش نوین الکترومکانیکی برای پخش و جداسازی نانولوله‌ها، عایق جاذب الکترومغناطیسی باند X با راندمان بالا و مقرون به صرفه تولید نماید. برای این منظور، نخست نانوکامپوزیت‌هایی با زمینه پلی‌متیل‌متاکریلات با درصدهای بین 0 تا 2 % وزنی از نانولوله‌های کربنی با دو روش الکترومکانیکی و پروب التراسونیک تولید شد. ساختار نمونه‌ها توسط میکروسکوپ الکترونی روبشی و طیف‌نگاری رامان مورد ارزیابی قرار گرفت. همچنین مقاومت الکتریکی نمونه‌ها برای تعیین غلظت آستانه رسانایی اندازه-گیری شد. در گام نهایی ارزیابی‌ها، رفتار الکترومغناطیسی نمونه‌ها مورد بررسی قرار گرفت. نتایج نشان می‌دهند آستانه رسانایی در روش الکترومکانیکی در غلظت وزنی 2/0‌% رخ داده است، در حالی که برای روش التراسونیک این رویداد در غلظت 1‌% مشاهده شد. بر اساس مطالعات میکروسکوپی و طیف‌نگاری رامان، توانایی جداسازی الکترومکانیکی در حفاظت از ساختار و طول نانولوله‌ها، عامل اصلی کاهش 80 درصدی غلظت آستانه رسانش تشخیص داده شد. بررسی خصوصیات الکترومغناطیس نمونه‌ها در آستانه رسانایی نشان می‌دهد که روش الکترومکانیکی علی‌رغم داشتن غلظتی معادل 20‌% روش پروب التراسونیک، عایق‌سازی موثر الکترومغناطیسی dB 38 را ارایه می‌دهد که در مقایسه با روش التراسونیک 16% بیشتر است. البته مزیت روش الکترومکانیکی در مقایسه با سایر روش‌ها، حاکی از امکان تقلیل 25 برابری غلظت و همزمان افزایش میزان جذب از 25 به dB 36 است.

کلیدواژه‌ها

عنوان مقاله [English]

Fabrication of Carbon Nanotubes-Based Efficient Electromagnetic Waves Shields Nanocomposites Using Electro-Mechanically Dispersion Technique

نویسندگان [English]

  • Ayub Karimzad Ghavidel 1
  • Mohammad Zadshakoyan 2
  • Gholamreza Kiani 3

1 Department of Mechanical Engineering, Technical and Vocational University, Tehran, Iran.

2 Department of Manufacturing and Production, University of Tabriz, Tabriz, Iran.

3 Department of Organic and Biochemistry, University of Tabriz, Tabriz, Iran.

چکیده [English]

This research is trying to fabricate an efficient and economical EMIS X-band using Electro-Mechanically Dispersion Technique (EMDT). For this purpose, first, poly-methyl-methacrylate (PMMA)-based nanocomposites produced with the different weight percentages between 0 to 2 %, by two EMDT and ultrasonic probe methods. The structure of samples were evaluated by scanning electron microscope and Raman spectroscopy. The electrical resistivity of samples were also measured to determine percolation threshold. At the final assessments, electromagnetic behavior of the samples were examined. The results shows percolation threshold was occurred at the concentration of 0.2 wt.% in EMDT, while this event was observed at the concentration of 1 wt.% for ultrasonic method. According to the microscopic study and the results of Raman spectroscopy, the ability of EMDT in protecting the structure and length of CNTs was detected as the main factor to decrease 80 % in percolation threshold concentration. The investigation of electromagnetic properties of samples at percolation threshold show that EMDT method, despite having a concentration equal to 20% of the ultrasonic probe method, offers effective EMIS of 38 dB, which is 16% higher than the ultrasonic probe method. However, the advantage of EMDT compared to earlier presented methods relates to reduce 25 times the concentration and simultaneously increasing the absorption from 25 to 36 dB.

کلیدواژه‌ها [English]

  • Electromagnetic waves shields
  • Carbon nanotubes
  • Aspect ratio
  • Electro-Mechanically Dispersion Technique (EMDT)
  • Ultrasonic
[1] Arjmand, M., Apperley, T., Okoniewski, M. and Sundararaj, U., “Comparative Study of Electromagnetic Interference Shielding Properties of Injection Molded Versus Compression Molded Multi-Walled Carbon Nanotube/Polystyrene Composites,” Carbon, Vol. 50, No. 14, pp. 5126-5134, 2012.
[2] Mirmohammadi, S. A., Sadjadi, S., Didehban, K., Yarahmadi, E. and Bahri-Laleh, N., “Synthesis of Polyaniline/Zinc-Cobalt Ferrite Nanocomposites and Their Use in the Preparation of Radar Absorber Coatings,” Journal of Science and Technology of Composites, Vol. 7, No. 1, pp. 761-767, 2020.
[3] Yang, S., Lozano, K., Lomeli, A., Foltz, H. D. and Jones, R., “Electromagnetic Interference Shielding Effectiveness of Carbon Nanofiber/Lcp Composites,” Composites Part A: applied science and manufacturing, Vol. 36, No. 5, pp. 691-697, 2005.
[4] Huang, J. C., “Emi Shielding Plastics: A Review,” Advances in Polymer Technology: Journal of the Polymer Processing Institute, Vol. 14, No. 2, pp. 137-150, 1995.
[5] Arjmand, M., “Electrical Conductivity, Electromagnetic Interference Shielding and Dielectric Properties of Multi-Walled Carbon Nanotube/Polymer Composites,” PhD Thesis, University of Calgary, Canada, 2014.
[6] Arjmand, M., Mahmoodi, M., Gelves, G. A., Park, S. and Sunderaraj, U., “Electrical and Electromagnetic Interference Shielding Properties of Flow-Induced Oriented Carbon Nanotubes in Polycarbonate,” Carbon, Vol. 49, No. 11, pp. 3430-3440, 2011.
[7] Mahmoodi, M., Arjmand, M., Sundararaj, U. and Park, S., “The Electrical Conductivity and Electromagnetic Interference Shielding of Injection Molded Multi-Walled Carbon Nanotube/Polystyrene Composites,” Carbon, Vol. 50, No. 4, pp. 1455-1464, 2012.
[8] Agalari, M., Heidari, F., Shelesh-Nezhad, K. and Navid, T., “Experimental Study on the Mechanical Properties, Morphology and Fluidity of Abs/Pbt/Cnt Nanocomposites,” Journal of Science and Technology of Composites, Vol. 7, No. 4, pp. 1189-1196, 2021.
[9] Aghajari, E., Morady, S., Navid Famili, M., Zakiyan, S. and Golbang, A., “Responses of Polystyrene/Mwcnt Nanocomposites to Electromagnetic Waves and the Effect of Nanotubes Dispersion,” Iran. J. Polym. Sci. Technol. (Persian), Vol. 27, pp. 193-201, 2014.
[10] Esmaili, P., Azdast, T., Doniavi, A., Hasanzadeh, R., Mamaghani, S. and Eungkee Lee, R., “Experimental Investigation of Mechanical Properties of Injected Polymeric Nanocomposites Containing Multi-Walled Carbon Nanotubes According to Design of Experiments,” Journal of Science and Technology of Composites, Vol. 2, No. 3, pp. 67-74, 2015.
[11] Wang, X., Jiang, Q., Xu, W., Cai, W., Inoue, Y. and Zhu, Y., “Effect of Carbon Nanotube Length on Thermal, Electrical and Mechanical Properties of Cnt/Bismaleimide Composites,” Carbon, Vol. 53, pp. 145-152, 2013.
[12] Guo, J., Liu, Y., Prada‐Silvy, R., Tan, Y., Azad, S., Krause, B., Pötschke, P. and Grady, B. P., “Aspect Ratio Effects of Multi‐Walled Carbon Nanotubes on Electrical, Mechanical, and Thermal Properties of Polycarbonate/Mwcnt Composites,” Journal of Polymer Science Part B: Polymer Physics, Vol. 52, No. 1, pp. 73-83, 2014.
[13] Esbati, A. and Irani, S., “Multiscale Modeling of Fracture in Polymer Nanocomposite Reinforced by Intact and Functionalized Cnts,” Journal of Science and Technology of Composites, Vol. 4, No. 1, pp. 35-46, 2017.
[14] Karimi, M., Ghajar, R. and Montazeri, A., “Investigation of Nanotubes’ Length and Their Agglomeration Effects on the Elastoplastic Behavior of Polymer-Based Nanocomposites,” Journal of Science and Technology of Composites, Vol. 4, No. 2, pp. 229-240, 2017.
[15] Kasaliwal, G. R., Pegel, S., Göldel, A., Pötschke, P. and Heinrich, G., “Analysis of Agglomerate Dispersion Mechanisms of Multiwalled Carbon Nanotubes During Melt Mixing in Polycarbonate,” Polymer, Vol. 51, No. 12, pp. 2708-2720, 2010.
[16] Rong, Q., Shao, C. and Bao, H., “Molecular Dynamics Study of the Interfacial Thermal Conductance of Multi-Walled Carbon Nanotubes and Van Der Waals Force Induced Deformation,” Journal of Applied Physics, Vol. 121, No. 5, pp. 054302, 2017.
[17] Hoseini, A. H. A., Arjmand, M., Sundararaj, U. and Trifkovic, M., “Significance of Interfacial Interaction and Agglomerates on Electrical Properties of Polymer-Carbon Nanotube Nanocomposites,” Materials & Design, Vol. 125, pp. 126-134, 2017.
[18] Hashemi, S. A., Mousavi, S. M., Arjmand, M., Yan, N. and Sundararaj, U., “Electrified Single‐Walled Carbon Nanotube/Epoxy Nanocomposite Via Vacuum Shock Technique: Effect of Alignment on Electrical Conductivity and Electromagnetic Interference Shielding,” Polymer Composites, Vol. 39, No. S2, pp. E1139-E1148, 2018.
[19] Singh, B., Saini, K., Choudhary, V., Teotia, S., Pande, S., Saini, P. and Mathur, R., “Effect of Length of Carbon Nanotubes on Electromagnetic Interference Shielding and Mechanical Properties of Their Reinforced Epoxy Composites,” Journal of nanoparticle research, Vol. 16, No. 1, pp. 1-11, 2014.
[20] Yuen, S. M., Ma, C. C. M., Chuang, C. Y., Yu, K. C., Wu, S. Y., Yang, C. C. and Wei, M. H., “Effect of Processing Method on the Shielding Effectiveness of Electromagnetic Interference of Mwcnt/Pmma Composites,” Composites Science and Technology, Vol. 68, No. 3-4, pp. 963-968, 2008.
[21] Pötschke, P., Dudkin, S. M. and Alig, I., “Dielectric Spectroscopy on Melt Processed Polycarbonate—Multiwalled Carbon Nanotube Composites,” Polymer, Vol. 44, No. 17, pp. 5023-5030, 2003.
[22] Jiang, Y., Song, H. and Xu, R., “Research on the Dispersion of Carbon Nanotubes by Ultrasonic Oscillation, Surfactant and Centrifugation Respectively and Fiscal Policies for Its Industrial Development,” Ultrasonics sonochemistry, Vol. 48, pp. 30-38, 2018.
[23] Hilding, J., Grulke, E. A., George Zhang, Z. and Lockwood, F., “Dispersion of Carbon Nanotubes in Liquids,” Journal of dispersion science and technology, Vol. 24, No. 1, pp. 1-41, 2003.
[24] Ghavidel, A. K., Zadshakoyan, M., Arjmand, M. and Kiani, G., “A Novel Electro-Mechanical Technique for Efficient Dispersion of Carbon Nanotubes in Liquid Media,” International Journal of Mechanical Sciences, Vol. 207, pp. 106633, 2021.
[25] Ghavidel, A. K., Zadshakoyan, M. and Arjmand, M., “Mechanical Analysis of Aligned Carbon Nanotube Bundles under Electric Field,” International Journal of Mechanical Sciences, Vol. 196, pp. 106289, 2021.
 [26] Yu, S., Wang, X., Xiang, H., Zhu, L., Tebyetekerwa, M. and Zhu, M., “Superior Piezoresistive Strain Sensing Behaviors of Carbon. Nanotubes in One-Dimensional Polymer Fiber Structure,” Carbon, Vol. 140, pp. 1-9, 2018.
[27] Lahelin, M., Annala, M., Nykänen, A., Ruokolainen, J. and Seppälä, J., “In Situ Polymerized Nanocomposites: Polystyrene/Cnt and Poly (Methyl Methacrylate)/Cnt Composites,” Composites Science and Technology, Vol. 71, No. 6, pp. 900-907, 2011.
[28] Du, F., Fischer, J. E. and Winey, K. I., “Coagulation Method for Preparing Single‐Walled Carbon Nanotube/Poly (Methyl Methacrylate) Composites and Their Modulus, Electrical Conductivity, and Thermal Stability,” Journal of Polymer Science Part B: Polymer Physics, Vol. 41, No. 24, pp. 3333-3338, 2003.
[29] Mazov, I., Kuznetsov, V., Moseenkov, S., Ishchenko, A., Rudina, N., Romanenko, A., Buryakov, T., Anikeeva, O., Macutkevic, J. and Seliuta, D., “Structure and Electrophysical Properties of Multiwalled Carbon Nanotube/Polymethylmethacrylate Composites Prepared Via Coagulation Technique,” Nanoscience and Nanotechnology Letters, Vol. 3, No. 1, pp. 18-23, 2011.
[30] Ghavidel, A. K., Azdast, T., Shabgard, M., Navidfar, A. and Sadighikia, S., “Improving Electrical Conductivity of Poly Methyl Methacrylate by Utilization of Carbon Nanotube and Co2 Laser,” Journal of applied polymer science, Vol. 132, No. 42, 2015.
[31] Duan, W. H., Wang, Q. and Collins, F., “Dispersion of Carbon Nanotubes with Sds Surfactants: A Study from a Binding Energy Perspective,” Chemical Science, Vol. 2, No. 7, pp. 1407-1413, 2011.
[32] Arrigo, R., Teresi, R., Gambarotti, C., Parisi, F., Lazzara, G. and Dintcheva, N. T., “Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites,” Materials, Vol. 11, No. 3, pp. 383, 2018.
[33] Xu, H., Abe, H., Naito, M., Fukumori, Y., Ichikawa, H., Endoh, S. and Hata, K., “Efficient Dispersing and Shortening of Super-Growth Carbon Nanotubes by Ultrasonic Treatment with Ceramic Balls and Surfactants,” Advanced Powder Technology, Vol. 21, No. 5, pp. 551-555, 2010.
[34] Zou, B., Chen, S. J., Korayem, A. H., Collins, F., Wang, C. M. and Duan, W. H., “Effect of Ultrasonication Energy on Engineering Properties of Carbon Nanotube Reinforced Cement Pastes,” Carbon, Vol. 85, pp. 212-220, 2015.
[35] Zare, Y., Rhee, K. Y. and Park, S. J., “Effects of Cnt Size, Network Fraction, and Interphase Thickness on the Tunneling Distance between Neighboring Carbon Nanotubes (Cnts) in Nanocomposites,” Journal of Industrial and Engineering Chemistry, Vol. 86, pp. 53-60, 2020.
[36] Li, J., Ma, P. C., Chow, W. S., To, C. K., Tang, B. Z. and Kim, J. K., “Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes,” Advanced Functional Materials, Vol. 17, No. 16, pp. 3207-3215, 2007.
[37] Qian, J., Pu, J. H., Zha, X. J., Bao, R. Y., Liu, Z. Y., Yang, M. B. and Yang, W., “Effect of Aspect Ratio of Multi-Wall Carbon Nanotubes on the Dispersion in Ethylene-Α-Octene Block Copolymer and the Properties of the Nanocomposites,” Journal of Polymer Research, Vol. 26, No. 12, pp. 1-11, 2019.
[38] Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I. and Galiotis, C., “Chemical Oxidation of Multiwalled Carbon Nanotubes,” carbon, Vol. 46, No. 6, pp. 833-840, 2008.
[39] Chapkin, W. A., Wenderott, J. K., Green, P. F. and Taub, A. I., “Length Dependence of Electrostatically Induced Carbon Nanotube Alignment,” Carbon, Vol. 131, pp. 275-282, 2018.
[40] Wang, Y., Vasileva, D., Zustiak, S. P. and Kuljanishvili, I., “Raman Spectroscopy Enabled Investigation of Carbon Nanotubes Quality Upon Dispersion in Aqueous Environments,” Biointerphases, Vol. 12, No. 1, pp. 011004, 2017.
[41] Kuznetsov, V. L., Bokova‐Sirosh, S. N., Moseenkov, S. I., Ishchenko, A. V., Krasnikov, D. V., Kazakova, M. A., Romanenko, A. I., Tkachev, E. N. and Obraztsova, E. D., “Raman Spectra for Characterization of Defective Cvd Multi‐Walled Carbon Nanotubes,” physica status solidi (b), Vol. 251, No. 12, pp. 2444-2450, 2014.
[42] Huang, Y. Y. and Terentjev, E. M., “Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties,” Polymers, Vol. 4, No. 1, pp. 275-295, 2012.
[43] Mahmoodi, M., “Electrical, Thermal, and Machining Behaviour of Injection Moulded Polymeric Cnt Nanocomposites,” PhD Thesis, University of Calgary, Canada, 2014.
[44] Talamadupula, K. K. and Seidel, G. D., “Statistical Analysis of Effective Piezoresistivity of Carbon Nanotube Reinforced Polymer Nanocomposites from Electron Tunneling Effects,” in Proceeding of 2259.
[45] Otaegi, I., Aranburu, N., Iturrondobeitia, M., Ibarretxe, J. and Guerrica-Echevarría, G., “The Effect of the Preparation Method and the Dispersion and Aspect Ratio of Cnts on the Mechanical and Electrical Properties of Bio-Based Polyamide-4, 10/Cnt Nanocomposites “Polymers, Vol. 11, No. 12, pp. 2059, 2019.
[46] Rahman, R. and Servati, P., “Effects of Inter-Tube Distance and Alignment on Tunnelling Resistance and Strain Sensitivity of Nanotube/Polymer Composite Films,” Nanotechnology, Vol. 23, No. 5, pp. 055703, 2012.
[47] Zare, Y. and Rhee, K. Y., “A Power Model to Predict the Electrical Conductivity of Cnt Reinforced Nanocomposites by Considering Interphase, Networks and Tunneling Condition,” Composites Part B: Engineering, Vol. 155, pp. 11-18, 2018.
[48] Doh, J., Park, S. I., Yang, Q. and Raghavan, N., “The Effect of Carbon Nanotube Chirality on the Electrical Conductivity of Polymer Nanocomposites Considering Tunneling Resistance,” Nanotechnology, Vol. 30, No. 46, pp. 465701, 2019.
[49] Bao, W., Meguid, S., Zhu, Z., Pan, Y. and Weng, G., “Effect of Carbon Nanotube Geometry Upon Tunneling Assisted Electrical Network in Nanocomposites,” Journal of Applied Physics, Vol. 113, No. 23, pp. 234313, 2013.
[50] Gau, C., Kuo, C.-Y. and Ko, H., “Electron Tunneling in Carbon Nanotube Composites,” Nanotechnology, Vol. 20, No. 39, pp. 395705, 2009.
[51] Soltani Alkuh, M., Navid Famili, M. H. and Moeini, M. H., “The Effect of Foaming Process on the Radar Absorbing Properties of Pmma/Mwcnt Composites,” Iranian Journal of Polymer Science and Technology, Vol. 28, No. 3, pp. 195-189, 2015.