نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مواد ، دانشگاه صنعتی همدان، همدا ن.

2 استادیار، مهندسی مواد و متالورژی، دانشگاه صنعتی همدان ، همدا ن.

چکیده

کامپوزیت‌های زمینه آهنی حاوی ذرات سخت در برابر سایش خراشان مقاومت خوبی دارند و یکی از روش‌های تولید آنها ریخته‌گری-رخنه‌دهی است که توانایی ساخت قطعات تقویت شده موضعی با کامپوزیت‌ها را دارد. در این پژوهش رخنه‌دهی مذاب چدن خاکستری درون اسکلت متخلخلی از براده‌های فولاد زنگ‌نزن 304 بررسی شده است. مذاب چدن توسط نیروهای مویینگی به دورن اسکلت متخلخل کشیده شد. در دمای رخنه‌دهی مذاب چدن خاکستری با براده جامد فولاد 304 در تماس بود. به دلیل نفوذ عنصر کروم به عنوان یک عنصر کاربیدزا و نیکل به درون مذاب چدن خاکستری، ترکیب شیمایی آن تغییر کرده و مشابه ترکیب چدن‌های سفید Ni-Hard شده بود. با نفوذ و تبادل عناصر آلیاژی کامپوزیت زمینه آهنی با ذرات سخت کاربید کروم-آهن M7C3 و زمینه‌ی فریتی-آستنیتی به دست آمد. مکانیسم تشکیل و نوع و سختی فازها و نواحی مختلف با میکروسکوپ نوری و الکترونی و XRD و میکروسختی سنجی مورد بررسی قرار گرفت. با توجه به قیمت نسبتا پایین چدن خاکستری و ضایعاتی بودن براده‌های تراشکاری فولاد زنگ‌نزن می‌توان گفت که روشی برای تولید قطعات اقتصادی تقویت شده با کامپوزیت‌های سطحی پیشنهاد شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Feasibility of Production of an iron-base Metal Matrix Composite by Infiltration of molten Gray Cast Iron into a 304 Stainless Steel Porous Skeleton

نویسندگان [English]

  • Raziye Avand 1
  • Ahmad Ghaedri Hamidi 2
  • Mahdi Pourabdoli 2

1 Department of Materials Science and Engineering, Hamedan University of Technology, Hamedan, Iran.

2 Department of Materials Science and Engineering, Hamedan University of Technology, Hamedan, Iran.

چکیده [English]

Iron-based metal matrix composites containing hard particles have good resistance to abrasive wear. One of their production methods is infiltration-casting, which has the ability to produce surface composites reinforced parts. In this Article research , the infiltration of molten gray cast iron melt into a porous skeleton of compacted swarfs of 304 stainless steel has been investigated. The molten cast iron melt was pulled into the porous skeleton by capillary forces. At the infiltration temperature of the molten gray cast iron melt, it was in contact with the solid skeleton of 304 steel. Due to the diffusion of chromium as a carbide-maker element and nickel element into the molten gray cast iron, its chemical composition changed and became similar to the composition of white Ni-Hard cast irons. By diffusion and exchange of alloying elements, an iron matrix with hard chromium-iron carbide (M7C3) particles and a ferritic-austenitic matrix were obtained. The microstructure development formation, type, and hardness of different phases were examined with light and electron microscopy, XRD, and microhardness measurement. Due to the relatively low price of gray cast iron and the waste stainless steel turning chips, it can be said that a method has been proposed to produce economical parts reinforced with surface composites.

کلیدواژه‌ها [English]

  • Iran-Matrix Composites
  • Chromium Carbides
  • Infiltration-Casting
[1] Hutchings, I and Shipway, W. "Tribology Friction and Wearof Engineering Materials" Butterworth-Heinemann, 2017.
[2] Tang, S. L., Gao, Y. M. and Li, Y. F. “Recent Developments in Fabrication of Ceramic Particle Reinforced Iron Matrix
Wear Resistant Surface Composite Using Infiltration Casting Technology,” Ironmak. Steelmak., vol. 41, no. 8, pp. 633–640,
2014.
[3] Vijaya Ramnath, B., Parswajinan, C., Dharmaseelan, R.,Thileepan, K. and Nithin Krishna, K. “A Review on
Aluminium Metal Matrix Composites,” in Materials Today: Proceedings, vol. 46, pp. 4341–4343, 2020.
[4] Ravichandran, M., Naveen Sait, A. and Anandakrishnan, V. “Al–TiO2–Gr powder metallurgy hybrid composites with cold upset forging,” Rare Met., vol. 33, no. 6, pp. 686–696, 2014.
[5] Li, Z., Jiang, Y., Zhou, R., Lu, D. and Zhou, R. “Dry Threebody Abrasive Wear Behavior of WC Reinforced Iron Matrix
Surface Composites Produced by V-EPC Infiltration Casting Process,” Wear, vol. 262, no. 5–6, pp. 649–654, 2007.
[6] Hu, S. W., Zhao, Y. G., Wang, Z., Li, Y. G. and Jiang, Q. C.“Fabrication of in Situ TiC Locally Reinforced Manganese
Steel Matrix Composite via Combustion Synthesis during Casting,” Mater. Des., vol. 44, pp. 340–345, 2013.
[7] Ma, X., feng Li, L., Zhang, F., Hua Zhang, Z., Wang, H. and E. ze Wang, “Microstructure and Wear Characteristics of ATZ
Ceramic Particle Reinforced Gray Iron Matrix Surface Composites,” China Foundry, vol. 15, no. 3. pp. 167–172.
[8] Li, Y. and Gao, Y. “Three-body Abrasive Wear Behavior of CC/high-Cr WCI Composite and its Interfacial Characteristics,” Wear, vol. 268, no. 3–4, pp. 511–518, 2010.
[9] Moreira, A. B., Ribeiro, L. M. M. and Vieira, M. F.“Production of TiC-MMCs Reinforcements in Cast Ferrous
Alloys Using in situ Methods,” Materials (Basel)., vol. 14, no. 17, pp. 1–19, 2021.
[10] Moreira, A. B. , Sousa, R. O., Lacerda, P., Ribeiro, L. M. M., Pinto, A. M. P. andVieira, M. F. “Microstructural
Characterization of TiC-White Cast-Iron Composites Fabricated by in Situ Technique,” Materials (Basel)., vol. 13, no. 1, pp. 5–8, 2020.
[11] Li, P., Li, X. , Li, Y., Gong, M., Tian, C. and W. Tong, “Microstructure and Mechanical Properties of Millimeter WC
Particle-Reinforced High-Chromium Cast Iron Composites,” J. Mater. Eng. Perform., vol. 28, no. 12, pp. 7816–7827, 2019.
[12] Kambakas K. and Tsakiropoulos, P. “Solidification of HighCr White Cast Iron-WC Particle Reinforced Composites,” 
Mater. Sci. Eng. A, vol. 413–414, pp. 538–544, 2005.
[13] Moreira, A. B., Ribeiro, L. M. M., Lacerda, P., Sousa, R. O.,Pinto, A. M. P. and Vieira, M. F. “Preparation and
Microstructural Characterization of a High-Cr White Cast Iron Reinforced with WC Particles,” Materials (Basel)., vol. 13,no. 
11, pp. 4–6, 2020.
[14] Cao G., Guo, E., Feng, Y. and Wang, L. “Abrasion Behavior of WC Reinforced Cast Iron Surface Composite Fabricated by Cast-Infiltration Method,” Adv. Mater. Res., vol. 476–478, pp. 555–559, 2012.
[15] Leibholz, R., Robert, M. H., Leibholz, H. and Bayraktar, E. “Development of Functionally Graded Nodular Cast Iron
Reinforced with Recycled WC Particles,” Conf. Proc. Soc. Exp. Mech. Ser., vol. 7, pp. 241–249, 2017.
[16] Zeng, H., Sui, Y., Niu, G., He, H., Jiang, Y. and Zhou, M. “Effect of Alloy Powder on the Properties of ZTA Particles
Reinforced High Chromium Cast Iron Composites,” Mater. Res. Express, vol. 8, no. 3, 2021.
[17] Song, Y.and Wang, H. “High Speed Sliding Wear Behavior of Recycled WCP-Reinforced Ferrous Matrix Composites
Fabricated by Centrifugal Cast,” Wear, vol. 276–277, pp. 105–110, 2012.
[18] Kambakas, K. and Tsakiropoulos, P.“Sedimentation Casting of Wear Resistant Metal Matrix Composites,” Mater. Sci. Eng. A, vol. 435–436, pp. 187–192, 2006.
[19] Chang, C., Hsieh, C., Lin, C., Chen, J., Fan, C. and Wu, W.“Effect of carbon content on microstructure and corrosion
behavior of hypereutectic Fe – Cr – C claddings,” Mater. Chem. Phys., vol. 123, no. 1, pp. 241–246, 2010.
[20] Bhadeshia, H. K. D. H., Svensson, L. E. and Gretoft, B. “A Model for The Development of Microstructure in Low-Alloy
Steel (Fe-Mn-Si-C) Weld Deposits,” Acta Metall., vol. 33, no. 7, pp. 1271–1283, 1985.
[21] Zhong, L., Hojamberdiev, M., Ye, F., Wu, H., and Xu, Y. “Fabrication and microstructure of in Situ Vanadium Carbide
Ceramic Particulates-Reinforced Iron Matrix Composites,” Ceram. Int., vol. 39, no. 1, pp. 731–736, 2013.
[22] Zheng, B., Li, W., Tu, X., Song, S. and Huang, W. “Effect of ZTA Ceramic Particles Strengthened High Chromium White
Cast Iron on Three-body Abrasion Behavior,” Mater. Res.  Express, vol. 6, no. 11, 2019.
[23] Zhong, L., Ye, F., Xu, Y.and Li, J. “Microstructure and Abrasive Wear Characteristics of in Situ Vanadium Carbide
Particulate-Reinforced Iron matrix Composites,” Mater. Des.vol. 54, pp. 564–569, 2014.
[24] Zhong, L., Xu, Y. and Ye, F. “In Situ NbC ParticulateReinforced Iron Matrix Composite: Microstructure and
Abrasive Wear Characteristics,” Tribol. Lett., vol. 47, no. 2, pp. 253–259, 2012.
[25] Zhong, L., Xu, Y., Li, C., Ye, F., Liu, X. and Hojamberdiev, M. “Infiltration Casting and in Situ Fabrication of Tantalum
Carbide Particulate-Reinforced Iron Matrix Composites,” J. Compos. Mater., vol. 46, no. 8, pp. 895–901, 2012.
[26] Niu, L., Xu, Y., Wu, H. and Wang, W. “Preparation of in Situ (Fe,Cr) 7 C 3 /Fe Composite Coating by Centrifugal Casting,” Surf. Eng., vol. 27, no. 8, pp. 587–590, 2011.
[27] Ye, F., Hojamberdiev, M., Xu, Y., Zhong, L., Yan, H. and Chen, Z. “Volume Fraction Effect of V8C7 Particulates on
Impact Toughness and Wear Performance of V8C7/Fe Monolithic Composites,” J. Mater. Eng. Perform., vol. 23, no. 4, pp. 1402–1407, Apr. 2014.
[28] Zhong, L., Xu, Y., Hojamberdiev, M., Wang, J. and Wang, J. “In Situ Fabrication of Titanium Carbide ParticulatesReinforced Iron Matrix Composites,” Mater. Des., vol. 32, no.  7, pp. 3790–3795, 2011.
[29] Ye, F., Hojamberdiev, M., Xu, Y., Zhong, L., Zhao, N., Li, Y and Huang, X. “Microstructure, Microhardness and Wear
Resistance of VCp/Fe Surface Composites Fabricated in Situ,” Appl. Surf. Sci., vol. 280, no. 2013.
[30] Liu, J. and Li, Y. “Study on Surface Infiltration Casting of Low-carbon Ductile Iron,” Adv. Mater. Res., vol. 529, pp. 519–
523, 2012.
[31] Zhong, L., Ye, F., Xu, Y. and Li, J. “Microstructure and Abrasive Wear Characteristics of in Situ Vanadium Carbide
Particulate-Reinforced Iron Matrix Composites,” Mater. Des., vol. 54, no. 2014, pp. 564–569, 2014.
[32] Olejnik, E. Szymański, Tokarski, T., Opitek, B. and Kurtyka,
P. “Local Composite Reinforcements of TiC/FeMn Type Obtained in Situ in Steel Castings,” Arch. Civ. Mech. Eng., vol.19, no. 4, pp. 997–1005, 2019.
[33] Buytoz, S. “Microstructural Properties of M7C3 Eutectic Carbides in a Fe–Cr–C Alloy,” Mater. Lett., vol. 60, pp. 605–608, 2006.