نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی هوافضا، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهرا ن.

2 دانشیار، مهندسی هوافضا، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

3 دانشجوی دکترا، مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهرا ن.

10.22068/jstc.2022.542940.1758

چکیده

هسته‌های لانه‌زنبوری در سازه‌های کامپوزیتی دارای هسته، بسیار مورد استفاده قرار می‌گیرند. از مسائل مهم به‌ کارگیری هسته‌ها به‌ خصوص لانه زنبوری‌ها، اطمینان از اتصال مناسب بین لایه‌های دو سمت سازه به هسته میباشد؛ چراکه عدم اتصال مناسب، منجر به جدایی لایه از هسته خواهد شد. هدف از این پژوهش، بررسی و پیشنهاد مناسب‌ترین روش برای ساخت قطعه کامپوزیتی با هسته لانه‌زنبوری تحت استانداردهای ASTM C273 و ASTM C297 می-باشد. از نتایج این پژوهش، دریافت شد که مناسب‌ترین راه برای ساخت یک قطعه کامپوزیتی با هسته لانه‌زنبوری، روش ساخت دومرحله‌ای می‌باشد. چراکه در روش دومرحله‌ای با استفاده از دستگاه وکیوم، بعد از ایجاد خلأ در قطعه، رزین تا دیواره‌های هسته بالا می‌آید و اتصال بین هسته و لایه‌ها به‌خوبی برقرار می‌شود. ناحیه اتصال هسته با لایه‌ها در روش دومرحله‌ای دو برابر بیشتر از روش تک‌مرحله‌ای و روش ساخت دستی می‌باشد. به طوری که از تعداد 30 نمونه‌ای که برای هر یک از سه روش ‌ساخت مذکور استفاده گردید، در روش دومرحله این جدایش در خود هسته لانه‌زنبوری در 28 نمونه از 30 نمونه رخ داد که نشان دهنده‌ی مناسب بودن این روش (جدایش مورد قبول با بیش از 90 درصد) می‌باشد. اما در روش تک مرحله‌ای و روش دستی به ترتیب 18 عدد از 30 نمونه و همچنین 9 عدد از 30 نمونه هسته دچار شکست در ناحیه هسته تحت آزمون کشش و برش شد.لازم به ذکر است که مفهوم روش دومرحله ای ، یک مرحله ای و روش دومرحله ای بدون وکیوم در متن مقاله توضیح داده شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental study of bond strength between core and composite layers under tensile and shear loads in different methods of fabricating nucleate composite structures

نویسندگان [English]

  • Alireza Lazar Usefi 1
  • Bijan Mohammadi 2
  • Ehsan Anbarzadeh 3

1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

3 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

Honeycombs cores are widely used in nucleate composite structures. One of the important issues in using cores, especially honeycombs, is to ensure proper connection between the layers on both sides of the structure to the core; Because improper connection will lead to separating the layer from the core. The purpose of this study is to investigate and propose the most suitable method for making composite parts with honeycomb core under ASTM C273 and ASTM C297 standards. As a result, it was concluded that the most appropriate way to make a composite piece with honeycomb core is a two-step fabrication method. This is because in the two-stage method, using a vacuum device, after creating a vacuum in the part, the resin rises to the walls of the core and the connection between the core and the layers is established well. The area of connection of the core with the layers in the two-stage method is twice as large as the single-stage method and the manual construction method. So that out of 30 samples that were used for each of the three mentioned construction methods, in the two-stage method, this separation occurred in the honeycomb core itself in 28 samples out of 30 samples, which indicates the suitability of this method. (Separation is acceptable with more than 90%). However, in the one-step method and the manual method, 18 out of 30 samples and also 9 out of 30 core samples failed in the core area under the tensile and shear test, respectively.

کلیدواژه‌ها [English]

  • Nucleate sandwich panels
  • Honeycomb cores
  • Manufacturing methods
  • Connection between core and layers
[1] Taheri-Behrooz, F., Kiani, A., “Simulation of thermo-mechanical behavior of glass-epoxy composites containing shape memory alloy under static loading”, Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 111-122, 2016.
[2] Mohammadi, B., Asl Kamkar, S., Farrokhabadi, A., “Matrix cracking and induced delamination in symmetrically laminated composites subjected to static loading by using multi scale damage mechanics”, Journal of Science and Technology of Composites, Vol. 4, No. 1, pp. 9-24, 2017.
[3] Shokrieh, M. M., Ghajar, M., Salamattalab, M., Madoliat, R., “Progressive damage modeling of laminated composites by considering simultaneous effects of interlaminar and intralaminar damage mechanisms”, Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 1-8, 2015.
[4] He, L., Cheng, Y. S., Liu, J., “Precise bending stress analysis of corrugated-core, honeycomb-core and X-core sandwich panels”, Composite Structures, Vol. 94, No. 5, pp. 1656-1668, 2012.
[5] Mohammadi, B., Fazlali, B., “Fatigue life prediction of laminated composites under multiaxial fatigue loading condition by using developed continuum damage mechanics model”, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 215-224, 2016.
[6] Taheri-Behrooz, F., Mahdavizade, M. J. S., Gholami, M. J., “Micromechanics of stress transfer through the interphase in pull out test of fiber through the resin”, Journal of Science and Technology of Composites, Vol. 4, No. 3, pp. 283-294, 2017.
[7] Raju, K. S., Smith, B. L., Tomblin, J. S., Liew, K. H., Guarddon, J. C., “Impact damage resistance and tolerance of honeycomb core sandwich panels”, Journal of Composite Materials, 42, No. 4, pp. 385-412, 2008.
[8] Tabatabaee, M., Taheri-Behrooz, F., Razavi, S. M., Liaghat, G. H., “Electrical conductivity enhancement of Carbon/Epoxy composites using nanoparticles”, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 605-614, 2019.
[9] Mohammadi, B., Kazemi, A., Ghasemi, R., “Damage analysis of holed composite laminates using continuum damage mechanics”, Journal of Science and Technology of Composites, Vol. 2, No. 3, pp. 22-34, 2015.
[10] Chen, Z., Yan, N., “Investigation of elastic moduli of Kraft paper honeycomb core sandwich panels. Composites Part B: Engineering”, Vol. 43, No. 5, pp. 2107-2114, 2012.
[11] Mohammadi, B., Fazlali, B., Madoliat, R., “Fatigue life prediction of symmetric cross ply laminated composite using a developed continuum damage mechanics-based model”, Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 13-22, 2015.
[12] Ebadi, S., Shahbazi, K., Anbarzadeh, E., "Investigation of Aluminum and Composite Aircraft Wings Under the Influence of Aerodynamic Forces and their Effects on Environmental Impacts", Journal of Environmental Friendly Materials, Vol. 5, No. 1, pp. 13-21, 2021.
[13] Starace, F., Orlando, S. D., Guida, M., Marulo, F., “Experimental study of a virtual allowables approach for the design of composite aircraft structures”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 14, pp. 2529-2541, 2021.
[14] Salehi Kolahi, M. R., Moeinkhah, H., “A theoretical model for analysis of ionic polymer metal composite sensors in fluid environments”, Journal of Computational Applied Mechanics, Vol. 51, No. 1, pp. 21-29, 2020.
[15] Du, Y., Yan, N., Kortschot, M. T., “Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation”, Composites Part B: Engineering, Vol. 43, No. 7, pp. 2875-2882, 2012.
[16] Gafarova, V. A., Kuzeev, I. R., “Destruction of Epoxy-Based Composite Materials under the Influence of Impact Load”, In Materials Science Forum, Vol. 992, pp. 331-335, 2020.
[17] Sun, G., Huo, X., Wang, H., Hazell, P. J., Li, Q., “On the structural parameters of honeycomb-core sandwich panels against low-velocity impact”, Composites Part B: Engineering, Vol. 216, 108881, 2021.
[18] Theobald, M. D., Langdon, G. S., Nurick, G. N., Pillay, S., Heyns, A., Merrett, R. P., “Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading”, Composite structures, Vol. 92, No. 10, pp. 2465-2475, 2010.
[19] Shojaee, T., Mohammadi, B., Madoliat, R., “Experimental and numerical investigation of effects of stiffener in buckling resistance of square laminated composites with circular hole” Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 43-52, 2019.
[20] Amirashjaee, K., Fakhreddini-Najafabadi, S., Taheri-Behrooz, F., “Numerical and experimental study of carbon/epoxy composite laminate response to low velocity impact”, Journal of Science and Technology of Composites, Vol. 8, No. 1, pp. 1461-1472, 2021.
[21] Esmaili, A., Taheri-Behrooz, F., “Comparison of numerical and analytical cohesive zone length models in the delamination of composite laminates”, Journal of Science and Technology of Composites, Vol. 7, No. 4, pp. 1235-1242, 2021.
[22] Delshad Gholami, M., Rahmatabadi, D., Shojaee, T., Hashemi, R., & Mohammadi, B., “Evaluation of mechanical properties and fracture toughness of aluminum-magnesium-aluminum composite produced by cold roll bonding process”, Journal of Science and Technology of Composites, Vol. 8, No. 1, pp. 1317-1326, 2021.
[23] Shahbakhsh, S., Khosravi, H., Tohidlou, E., “Improvement in interlaminar shear strength and flexural properties of carbon fiber/epoxy composite using surface-modified carbonate calcium”, Journal of Science and Technology of Composites, Vol. 6, No. 3, pp. 343-350, 2019.
[24] Abedi, M., Aliabadi, A., Mosavei, S. E., Sarfaraz, R., “Dimensional characteristic of glass/epoxy composite plate with edge notch under wet freeze-thaw cycles”, Journal of Solid and Fluid Mechanics, Vol. 10, No. 3, pp. 219-231, 2020.
[25] Feli, S., Pour, M. N., “An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact”, Composites Part B: Engineering, Vol. 43 No. 5, pp. 2439-2447, 2012.
[26] Bashiri Goodarzi, H., Yarmohammad Tooski, M., “An experimental study of the effects of carbon nanotube and graphene addition on the impact strength of Epoxy/Basalt fiber composite”, Journal of Science and Technology of Composites, Vol. 6, No. 3, pp. 411-418, 2019.
[27] Kyner, A., Dharmasena, K., Williams, K., Deshpande, V., Wadley, H., “Response of square honeycomb core sandwich panels to granular matter impact. International Journal of Impact Engineering”, Vol. 117, No. 1, pp. 13-31, 2018.
[28] Elhami, M., Habibi, S., “A Study on morphology of Poly (vinyl alcohol)-organoclay nanocomposite nanofibers”, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 325-330, 2018.
[29] Murthy, O., Munirudrappa, N., Srikanth, L., Rao, R. M. V. G. K., “Strength and stiffness optimization studies on honeycomb core sandwich panels”, Journal of reinforced plastics and composites, Vol. 25, No. 6, pp. 663-671, 2006.
[30] Giglio, M., Gilioli, A., Manes, A., “Numerical investigation of a three point bending test on sandwich panels with aluminum skins and Nomex™ honeycomb core”, Computational Materials Science, Vol. 56, No. 1, pp. 69-78, 2012.
[31] Nayak, S. K., Singh, A. K., Belegundu, A. D., Yen, C. F., “Process for design optimization of honeycomb core sandwich panels for blast load mitigation”, Structural and Multidisciplinary Optimization, Vol. 47, No. 5, pp. 749-763, 2013.
[32] Najafi, M., Darvizeh, A., Ansari, R., “Evaluation of impact strength of composites and fiber metal laminates hybridized with nanoclay after exposure to high temperature thermal shock. Journal of Science and Technology of Composites, Vol. 4, No. 3, pp. 263-274, 2017.
[33] Karagiozova, D., Nurick, G. N., Langdon, G. S., “Behaviour of sandwich panels subject to intense air blasts–Part 2: Numerical simulation”, Composite structures, Vol. 91, No. 4, pp. 442-450, 2009.
[34] Shokrieh, M. M., Zeinedini, A., “Analytical prediction of mode I strain energy release rate at crack growth initiation of polymeric nanocomposites”, Journal of Science and Technology of Composites, Vol. 3, No. 1, pp. 1-10, 2016.
[35] Tanimoto, Y., Nishiwaki, T., Shiomi, T., Maekawa, Z., “A numerical modeling for eigenvibration analysis of honeycomb sandwich panels”, Composite Interfaces, Vol. 8, No. 6, pp. 393-402, 2001.
[36] Foo, C. C., Seah, L. K., Chai, G. B., “Low-velocity impact failure of aluminium honeycomb sandwich panels”, Composite structures, Vol. 85, No. 1, pp. 20-28, 2008.
[37] Mohieddin Ghomshei, M. M., Shahi, R., “Stress analysis of single-lap bonded joints in composite tubes under torsion and hygrothermal effects using DQM”, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 375-385, 2018.
[38] Towsyfyan, H., Biguri, A., Boardman, R., Blumensath, T., “Successes and challenges in non-destructive testing of aircraft composite structures”, Chinese Journal of Aeronautics, Vol. 33, No. 3, pp. 771-791, 2020.
[39] Davar, A., Azarafza, R., Faraji Shoaa, J., “Experimental and numerical analysis of low-velocity impact on composite sandwich panels with grid stiffened core”, Journal of Science and Technology of Composites, Vol. 6, No. 4, pp. 615-626, 2020.
[40] Rahmani, M., Farrokhabadi, A., “Evaluation the energy release rate of induced delamination due to matrix cracking in symmetric composite laminate”, Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 53-68, 2019.
[41] Sun, G., Chen, D., Huo, X., Zheng, G., Li, Q., “Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels”, Composite Structures, Vol. 184, No. 1, pp. 110-124, 2018.
[42] Li, H., Fan, M., Yue, Y., Hu, G., He, Q., Yu, M., “Motion control of capsule-like underwater robot utilizing the swing properties of ionic polymer metal composite actuators”, Journal of Bionic Engineering, Vol. 17, 2. 1, pp. 281-289, 2020.
[43] Rajkumar, S., Arulmurugan, B., Manikandan, M., Karthick, R., Kaviprasath, S., “Analysis of physical and mechanical properties of A3003 aluminum honeycomb core sandwich panels”, In Applied Mechanics and Materials, Vol. 867, No. 1, pp. 245-253, 2017.
[44] Davalos, J. F., Qiao, P., Xu, X. F., Robinson, J., Barth, K. E., “Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications”, Composite structures, Vol. 52, No. 3, pp. 441-452, 2001.
[45] Pirmohammad, N., Liaghat, G. H., Pol, M. H., Sabouri, H., “Analytical, experimental and numerical investigation of sandwich panels made of honeycomb core subjected projectile impact”, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 153-164, 2014.
[46] De Morais, A. B., De Moura, M. F., Marques, A. T., & De Castro, P. T., “Mode-I interlaminar fracture of carbon/epoxy cross-ply composites”, Composites Science and Technology, Vol. 62, No. 5, pp. 679-686, 2002.
[47] Grau, D. L., Qiu, X. S., Sankar, B. V., “Relation between interfacial fracture toughness and mode-mixity in honeycomb core sandwich composites”, Journal of Sandwich Structures & Materials, Vol. 8, No. 3, pp. 187-203, 2006.
[48] Halimi F., Golzar, M., Beheshti, M. H., “Effect of distribution media on mold filling and quality of the final part in a vacuum assisted resin transfer molding, M.Sc thesis”, Department of Mechanical engineering, Tarbiat  Modares University, Vol. 1, No. 4, pp.51-57, 2011.
[49] Saseendran, V., Berggreen, C., “Mixed-mode fracture evaluation of aerospace grade honeycomb core sandwich specimens using the Double Cantilever Beam–Uneven Bending Moment test method”, Journal of Sandwich Structures & Materials, Vol. 22, No. 4, pp. 991-1018, 2020.
[50] Rao, K. K., Rao, K. J., Sarwade, A. G., & Chandra, M. S., “Strength analysis on honeycomb sandwich panels of different materials”, International Journal of Engineering Research and Applications, Vol. 2, No. 3, pp. 365-374, 2012.