نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا ، مهندسی مکانیک ، دانشگاه آزاد اسلامی واحد تهران جنوب ، تهرا ن.

2 استاد ، مهندسی مکانیک ، دانشگاه صنعتی خواج ه نصیرالدین طوسی ، تهرا ن.

3 استاد، دانشکده مهندسی و علم مواد ، دانشگاه صنعتی خواج ه نصیرالدین طوسی ، تهرا ن.

چکیده

در این مطالعه، رفتار ساندویچ پنل هسته ذوزنقه‌ای آلومینیومی با پوسته‌های کامپوزیتی شیشه/اپوکسی تقویت شده با آلیاژ حافظه‌دار تحت بار ضربه‌ای سرعت بالا، بصورت تجربی و عددی مورد بررسی قرار گرفته است. نمونه‌های کامپوزیتی جهت انجام آزمایش‌های کشش، فار و برش ساخته شدند و خواص مورد نیاز از آزمایش‌ها به دست آمد. سپس سازه‌های ساندویچی با هسته موجدار آلومینیومی و پوسته‌های 4 لایه کامپوزیت شیشه‌ای/اپوکسی با استفاده از روش لایه‌چینی دستی ساخته شد. به منظور تقویت پوسته‌های کامپوزیتی، از سیم آلیاژ حافظه‌دار در سه حالت، سه سیم بدون پیش کرنش، سه سیم با 3% پیش کرنش و سه سیم با 6% پیش کرنش استفاده شده است. نمونه‌ها تحت آزمایش ضربه سرعت بالا به وسیله تفنگ گازی قرار گرفتند. برای اعتبارسنجی و مقایسه نتایج، مدل‌های عددی نمونه‌ها در نرم‌افزار LS-Dyna با در نظر گرفتن شرایط آزمایش تجربی تهیه شد. نتایج شامل سرعت محدود بالستیک و انرژی جذب شده توسط سازه با راه حل‌های تجربی مقایسه و اعتبارسنجی شد. هدف از انجام این مطالعه، بررسی اثر افزودن سیم آلیاژ حافظه‌دار به جهت تقویت پوسته‌ها و تأثیر پیش کرنش بر رفتار بالستیکی سازه ساندویچی بوده است. نتایج بدست آمده نشان می دهد که وجود سیم آلیاژ حافظه‌دار و اعمال پیش کرنش باعث افزایش میزان جذب انرژی می‌شود. میزان جذب انرژی در مقایسه با نمونه بدون سیم، در نمونه 3 سیم بدون پیش کرنش تقریبا 10%، در نمونه 3 سیم با 3 درصد پیش کرنش تقریبا 22% و در نمونه 3 سیم با 6 درصد پیش کرنش تقریبا 30% افزایش یافته است.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of Shape memory wire on the ballistic behavior of smart corrugated core sandwich panels

نویسندگان [English]

  • Roham Maher 1
  • Seyed Mohammad Reza Khalili Khalili 2
  • Reza Eslami-Farsani 3

1 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

3 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

چکیده [English]

In this research, the impact behavior of trapezoidal corrugated core sandwich panel reinforced with SMA wires, has been investigated experimentally and numerically. Composite specimens were made to perform tensile, compression and shear tests, and the requisite properties were acquired from the tests. Then, sandwich structures with aluminum corrugated core and 4-layer glass/epoxy composites face-sheets were made using the hand-layup technique. In order to reinforce the composite face-sheets, SMA wires were used in two models: 3 SMA wires without pre strain, 3 SMA wires with 3% pre-strain and 3 SMA wires with 6% pre-strain. The test was performed using a gas gun. To validate and compare the results, the numerical models of the specimens were prepared in LS-Dyna, considering the experimental testing conditions. The results, including ballistic limited velocity and the absorbed energy of the structure were compared and validated by the experimental solutions. The aim of this study was to investigate the effect of adding shape memory alloy wire to reinforce the face-sheets and the effect of pre strain on the ballistic behavior of the sandwich structure. The results shows that presence of the SMA wires and applying pre-strain, leads to increasing energy absorption. Comparing to the wireless sample, the absorbed energy increased about 10%, 22% and 30% in the 3-wires sample without pre-strain, 3-wires sample with 3% pre-strain and 3-wires sample with 6% pre-strain, respectively.

کلیدواژه‌ها [English]

  • High Velocity Impact
  • Sandwich Panel
  • Corrugated core
  • Smart composite Face-sheet
  • Shape Memory Alloy
[1] Li, Z., Chen, W., Hao, H., “Numerical Study of Sandwich Panel with a New Bi-Directional Load-Self-Cancelling (Lsc) Core under Blast Loading”, Thin-Walled Structures, Vol. 127, pp. 90-101, 2018.
[2] Jing, L. and  Zhao, L., “Blast Resistance and Energy Absorption of Sandwich Panels with Layered Gradient Metallic Foam Cores“ Journal of Sandwich Structures & Materials, Vol. 21, No. 2, pp. 464-482, 2019.
[3] Wang, Z., “Recent Advances in Novel Metallic Honeycomb Structure“Composites Part B: Engineering, Vol. 166, pp. 731-741, 2019.
[4] Ivañez, I., Santiuste, C., Barbero, E. and  Sanchez-Saez, S., “Numerical Modelling of Foam-Cored Sandwich Plates under High-Velocity Impact“ Composite structures, Vol. 93, No. 9, pp. 2392-2399, 2011.
[5] Dayyani, I., Ziaei-Rad, S. and  Friswell, M. I., “The Mechanical Behavior of Composite Corrugated Core Coated with Elastomer for Morphing Skins“ Journal of Composite Materials, Vol. 48, No. 13, pp. 1623-1636, 2014.
[6] Ansari, M., Golzar, M. and  Behravesh, A. H., “Evaluation of Corrugated Composite Beam Deflection by Shape Memory Alloy Wire“ Modares Mechanical Engineering, Vol. 14, No. 8, 2014.
[7] Kumar, P. A. and  Rathakrishnan, E., “Corrugated Triangular Tabs for Supersonic Jet Control“ Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 228, No. 6, pp. 831-845, 2014.
[8] Katzman, H. A., Castaneda, R. M. and Lee, H. S., “Moisture Diffusion in Composite Sandwich Structures“Composites Part A: Applied Science and Manufacturing, Vol. 39, No. 5, pp. 887-892, 2008.
[9] Buehler,W.J.;Wiley, R.C. Nickel-Based Alloys. U.S. Patent 3,174,851, 23 March 1965.
[10] Taha OM, Bahrom MB, Taha OY, Aris MS. Experimental study on two way shape memory effect training procedure for nitinol shape memory alloy. ARPN J. Eng. Appl. Sci.; Vol. 10, No. 17, pp. 7847-51, 2015.
[11] Sun, M., Wang, Z., Yang, B. and  Sun, X., “Experimental Investigation of Gf/Epoxy Laminates with Different Smas Positions Subjected to Low-Velocity Impact“ Composite Structures, Vol. 171, pp. 170-184, 2017.
[12] Shariyat, M. and Hosseini, S., “Accurate Eccentric Impact Analysis of the Preloaded Sma Composite Plates, Based on a Novel Mixed-Order Hyperbolic Global–Local Theory“Composite Structures, Vol. 124, pp. 140-151, 2015.
[13] Baker, A., Jones, R. and Callinan, R., “Damage Tolerance of Graphite/Epoxy Composites“Composite Structures, Vol. 4, No. 1, pp. 15-44, 1985.
[14] Hazell, P. J. and Appleby-Thomas, G. J., “The Impact of Structural Composite Materials. Part 1: Ballistic Impact“The Journal of Strain Analysis for Engineering Design, Vol. 47, No. 7, pp. 396-405, 2012.
[15] Appleby-Thomas, G. J. and Hazell, P. J., “The Impact of Structural Composite Materials. Part 2: Hypervelocity Impact and Shock“ The Journal of Strain Analysis for Engineering Design, Vol. 47, No. 7, pp. 406-418, 2012.
[16] Khodadadi, A., Liaghat, G., Ahmadi, H., Bahramian, A. R., shahgholian, D., Anani, Y. and  Asemani, s., “Experimental and Numerical Analysis of High Velocity Impact on Kevlar/Epoxy Composite Plates“ Journal of Science and Technology of Composites, Vol. 6, No. 2, pp. 265-274, 2019 (In Persian).
[17] Pernas-Sánchez, J., Artero-Guerrero, J. A., Varas, D. and López-Puente, J., “Experimental Analysis of Normal and Oblique High Velocity Impacts on Carbon/Epoxy Tape Laminates“Composites Part A: Applied Science and Manufacturing, Vol. 60, pp. 24-31, 2014.
[18] Ahmadi, M., Khalili, SMR. And Eslami Faresani, R., “Investigation on Projectile Nose and Impact Angle Effects in High Velocity Impact on 4ply Glass/Carbon Laminates“Journal of Energetic Materials, Vol. 6, No. 2, 2012. (In Persian).
[19] Verma, L., Sivakumar, S. M., Andrew, J. J., Balaganesan, G., Arockirajan, A. and  Vedantam, S., “Compression after Ballistic Impact Response of Pseudoelastic Shape Memory Alloy Embedded Hybrid Unsymmetrical Patch Repaired Glass-Fiber Reinforced Polymer Composites“ Journal of Composite Materials, Vol. 53, No. 28-30, pp. 4225-4247, 2019.
[20] Eslami-Farsani, R. and Khazaie, M., “Effect of Shape Memory Alloy Wires on High-Velocity Impact Response of Basalt Fiber Metal Laminates“Journal of Reinforced Plastics and Composites, Vol. 37, No. 5, pp. 300-309, 2018.
[21] N. Pirmohammadi, G.H. Liaghat, M. Hossein Pol, “Experimental investigation on ballistic behavior of sandwich panels made of honeycomb core”, Moddares Mechanical Engineering, Vol. 14, No. 4, pp. 21-26, 2014 (In Persian).
[22] Ji G, Li G and Pang S. Novel sandwich panel with metallic millitube grid stiffened polymer core for impact mitigation. Eng Struct; Vol. 71, pp. 178–186, 2014.
[23] Shahbazi, A. and  Zeinedini, A., “Impact Response of E-Glass/Epoxy Composite Bi-Directional Corrugated Core Sandwich Panels“ Polymers and Polymer Composites, Vol. 29, No. 9, pp. 1563-1574, 2021.
[24] Hassanpoor, F. Liaghat, G. Sabouri, H. Hadavi, H., “Experimental Study of the interaction of surfaces with aluminum honeycomb core in sandwich panels in the quasistatic and dynamic penetration“, In Persain, Journal of Science and Technology of Composites,Vol. 16, No. 16, pp. 23-31, 2016.
[25] Hou, S., Zhao, S., Ren, L., Han, X. and Li, Q., “Crashworthiness Optimization of Corrugated Sandwich Panels“Materials & Design, Vol. 51, pp. 1071-1084, 2013.
[26] Wadley, H. N., Børvik, T., Olovsson, L., Wetzel, J. J., Dharmasena, K. P., Hopperstad, O. S., Deshpande, V. and  Hutchinson, J. W., “Deformation and Fracture of Impulsively Loaded Sandwich Panels“ Journal of the Mechanics and Physics of Solids, Vol. 61, No. 2, pp. 674-699, 2013.
[27] Kılıçaslan, C., Güden, M., Odacı, İ. K. and  Taşdemirci, A., “The Impact Responses and the Finite Element Modeling of Layered Trapezoidal Corrugated Aluminum Core and Aluminum Sheet Interlayer Sandwich Structures“ Materials & Design, Vol. 46, pp. 121-133, 2013.
[28] Navard Aluminum MFG Co., Arak Provience, I.R. Iran, https://www.navardaluconam.com, (accessed Feb. 24, 2020).
[29] Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Annual Book of ASTM Standard, 15.03, D 3039, 2014.
[30] Standard AS. D6641-09, 2009 “Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture”. West Conshohocken, PA, 2008, DOI: 10.1520/D6641-09.
[31] Standard AS. D5379-05, 2005 “Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method”. West Conshohocken, PA, 2005, DOI: 10.1520/D5379-05.
[32] Sudheer, M., Pradyoth, K. and  Somayaji, S., “Analytical and Numerical Validation of Epoxy/Glass Structural Composites for Elastic Models“ American Journal of Materials Science, Vol. 5, No. 3C, pp. 162-168, 2015.
[33] Lagoudas, Dimitris C., ed. Shape memory alloys: modeling and engineering applications. Springer Science & Business Media, 2008.
[34] Chang, F.-K. and  Chang, K.-Y., “Post-Failure Analysis of Bolted Composite Joints in Tension or Shear-out Mode Failure“ Journal of Composite Materials, Vol. 21, No. 9, pp. 809-833, 1987.
[35] Chang, F.-K. and  Chang, K.-Y., “A Progressive Damage Model for Laminated Composites Containing Stress Concentrations“ Journal of composite materials, Vol. 21, No. 9, pp. 834-855, 1987.
[36] Auricchio, F. and  Taylor, R. L., “Shape-Memory Alloys: Modelling and Numerical Simulations of the Finite-Strain Superelastic Behavior“ Computer methods in applied mechanics and engineering, Vol. 143, No. 1-2, pp. 175-194, 1997.
[37] Reis, J., Coelho, J., Monteiro, A. and  da Costa Mattos, H., “Tensile Behavior of Glass/Epoxy Laminates at Varying Strain Rates and Temperatures“ Composites Part B: Engineering, Vol. 43, No. 4, pp. 2041-2046, 2012.
[38] Armenakas, A. and  Sciammarella, C., “Response of Glass-Fiber-Reinforced Epoxy Specimens to High Rates of Tensile Loading“ Experimental Mechanics, Vol. 13, No. 10, pp. 433-440, 1973.
[39] Spranghers, K., Kakogiannis, D., Ndambi, J., Lecompte, D. and Sol, H., “Deformation Measurements of Blast Loaded Plates Using Digital Image Correlation and High-Speed Photography“in Proceeding of EDP Sciences, pp. 12006.
[40] Gur, S., Mishra, S. K. and  Frantziskonis, G. N., “Thermo-Mechanical Strain Rate–Dependent Behavior of Shape Memory Alloys as Vibration Dampers and Comparison to Conventional Dampers“ Journal of Intelligent Material Systems and Structures, Vol. 27, No. 9, pp. 1250-1264, 2016.
[41] Adharapurapu, R. R., Jiang, F., Vecchio, K. S. and  Gray III, G. T., “Response of Niti Shape Memory Alloy at High Strain Rate: A Systematic Investigation of Temperature Effects on Tension–Compression Asymmetry“ Acta materialia, Vol. 54, No. 17, pp. 4609-4620, 2006.
[42] B. L. Buitrago, C. Santiuste, E. Barbero, Modeling of composite sandwich structures with honeycomb core subjected to high-velocity impact, Composite Structures 92, pp. 2090–2096, 2010.
[43] H. Zhao, I. Elnasri, Y. Girard, Perforation of aluminum foam core sandwich panels under impact loading-An experimental study,International Journal of Impact Engineering, Vol. 34, No. 7, pp. 1246-1257, 2007.
[44] Hamid, I. A., Kamarudin, K., Osman, M., Abidin, A. Z., Zulkipli, Z., Jawi, Z. M., Isa, M. M., Solah, M., Hamzah, A. and  Ariffin, A., “Finite Element Bus Rollover Test Verification“ Journal of the Society of Automotive Engineers Malaysia, Vol. 3, No. 4, 2019.