نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، آزمایشگاه تحقیقاتی جوش و اتصال، دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران.

2 دانشیار، آزمایشگاه تحقیقاتی جوش و اتصال، دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران.

چکیده

استفاده از رزین‌ها و کامپوزیت‌های استخوانی یکی از روش‌ها مناسب برای تقویت استخوان‌های آسیب‌دیده و دچار پوکی می‌باشد. تزریق سیمان یکی از روش‌های رایج جهت تقویت فوری استخوان‌های صدمه‌دیده است. چنانچه در هنگام تزریق سیمان استخوانی به بافت استخوان در فصل مشترک اتصال ناپیوستگی و عدم چسبندگی به وجود آید، این عدم چسبندگی همچون یک ترک رفتار نموده و در اثر اعمال بارهای مکانیکی می‌تواند باعث جدایش اتصال سیستم دو ماده‌ای استخوان-سیمان شود. در این مقاله با استفاده از قطعه دو ماده‌ای (بافت اسفنجی استخوان مهره گاو- سیمان استخوانی هیدروکسی آپاتیت) به شکل دیسک برزیلی به بررسی رفتار شکست فصل مشترک اتصال در حالت‌های مختلف بارگذاری پرداخته می‌شود. آزمایش‌های شکست مود ترکیبی در زوایای مختلف 0، 9، 18 و 27 درجه نسبت به فصل مشترک اتصال انجام و مقادیر متناظر بار و انرژی شکست نمونه‌ها به دست آمد. نتایج نشان می‌دهد که با افزایش زاویه بارگذاری و افزایش مود لغزشی، مقدار بار و انرژی شکست اندکی افزایش می‌یابد. همچنین در تمامی حالت‌های بارگذاری، شکست در فصل مشترک استخوان- سیمان اتفاق می‌افتد. مقایسه نمونه‌های دو ماده‌ای استخوان-سیمان و تک‌ماده استخوان نشان‌دهنده افزایش نیرو و انرژی شکست در نمونه‌های استخوان-سیمان به نسبت نمونه تک‌ماده‌ای استخوان می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental mixed-mode fracture study in the interface of vertebrae bone tissue-hydroxyapatite cement using the bi-material Brazilian disc specimen

نویسندگان [English]

  • din mohammad imani 1
  • Mohammad Reza Mohammad Aliha 2

1 Welding and Joining Research Center, School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

2 Welding and Joining Research Center, School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

The use of resin based cement is a common method for strengthening and retaliation the damaged bones material. However due to lack of sufficient adhesion in the interface of two materials (i.e. bone and injected cement) a crack can be initiated in the interface and consequently it can be fractured due to application of external loads to the repaired bone part. In order to investigate the load carrying capacity and reliability of bi-material joint of bone's soft tissue-hydroxyl apatite cement, a number of bi-material bone-cement specimens in the shape of circular disc containing a center crack in the interface of disc and subjected to diametral compression were tested. The bi-material specimens were load under different inclination angles of crack related to the loading direction. This results in application of different mixed mode I+II (i.e. tensile-shear deformation) in the interface of center crack. The results showed that the fracture load and fracture energy becomes more by increasing the crack inclination angle (i.e. increasing the contribution of shear mode deformation relative to mode I component). In addition the overall strength of bi-material bone-cement system was higher than the neat one material bone material. The fracture of all tested bi-material samples was extended along the interface line of Brazilian disc specimen with no kinking into any of two bone or cement materials.

کلیدواژه‌ها [English]

  • Bone-cement
  • Bi-material Brazilian disc
  • Mixed mode loading
  • Interface fracture
[1] Yan, J. Clifton, K. Mecholsky, J. and Gower, L., “Effect of Temperature on the Fracture Toughness of Compact Bone,” Journal of Biomechanics, Vol. 40, no. 7, 2007.
[2] Lin, JT. Lane, JM., “Nonmedical management of osteoporosis,” Curr Opin Rheumatol. Vol. 14, pp. 441–6, 2002.
[3] Galibert, P. Deramond, H. Rosat, P. Le Gars, D., “Preliminary note on the treatment of vertebral angioma by percutaneous acrylic Vertebroplasty,” Neurochirurgie, pp. 33-166, 1987.
[4] Tam, LE. Pilliar, RM., “Fracture toughness of dentin/resin–composite adhesive interfaces,” J Dent Res, 1993.
[5] Khajotia, S. Dhuru, V. Fournelle, R. and Mckinney, M., “Fracture Toughness and Load Relaxation of Dentin Bonding Resin Systems,” Dental Materials Vol. 13, no. 3, 1997.
[6] Tan, H. Ao, H. Ma, R. and Tang, T., “Quaternised Chitosan-Loaded Polymethylmethacrylate Bone Cement: Biomechanical and Histological Evaluations,” Journal of Orthopaedic Translation Vol. 1, no. 1, pp. 57–66, 2013.
[7] Souza, M. DeMunck, J. Pongprueksa, P. VanEnde, A. and VanMeerbeek, B., “Correlative Analysis of Cement–Dentin Interfaces Using an Interfacial Fracture Toughness and Micro-Tensile Bond Strength Approach,” Dental Materials Vol. 32, no. 12, 1575–85, 2016.
[8] Tong, J., Wong, KY., and Lupton, C., “Determination of Interfacial Fracture Toughness of Bone–Cement Interface Using Sandwich Brazilian Disks,” Engineering Fracture Mechanics Vol. 74, no. 12, pp. 1904–16, 2007.
[9] MohammadAliha, M. Moosavi, A. MehriKhansari, N .and Safarabadi, M., “Effects of alumina and hydroxyapatite nanoparticles on fracture toughness of PMMA based dental composite,” In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 2, pp. 9-16, 2015.
[10] Soares, JB. Tang, TX., “Bimaterial Brazilian specimen for determining interfacial fracture toughness,” Eng Fract Mech, 1998.
[11] Carrera, C.A. Chen, Y.C. Li, Y. Rudney, J. Aparicio, C. and Fok, A., “Dentin-Composite Bond Strength Measurement Using the Brazilian Disk Test,” Journal of Dentistry Vol. 52, pp. 37–44, 2016.
[12] Banks-Sills, L. and Schwartz, J., “Fracture testing of Brazilian disk sandwich specimens,” International journal of fracture, Vol. 118, No. 3, pp. 191-209, 2002.
[13] Pang, H.L.J. Bong, S.N. Shi, X.Q. and Wang, Z.P., “Mixed mode fracture toughness characterization for interface and interlayer cracks in adhesive bonded joints,” In International Symposium on Electronic Materials and Packaging, Cat. No. 00EX458, pp. 197-200, 2000.
[14] Ryoji, Y. JinQiao, L. Jin-Quan, X. Toshiaki, O. and Tomoyoshi, O. “Mixed mode fracture criteria for an interface crack,” Engineering Fracture Mechanics, Vol. 47, No. 3, pp. 367-377, 1994.
[15] Banks-Sills, L. Travitzky, N. and Ashkenazi, D., “Interface fracture properties of a bimaterial ceramic composite,” Mechanics of Materials, Vol. 32, No. 12, pp. 711-722, 2000.
[16] Asdollah-Tabar, M., Heidari-Rarani, M., & Aliha, M. R. M. “The effect of recycled PET bottles on the fracture toughness of polymer concrete,” Composites Communications, 100684, 2021.
[17] Kavanagh, J.L. and Pavier, M.J., “Rock interface strength influences fluid-filled fracture propagation pathways in the crust,” Journal of Structural Geology, Vol. 63, pp. 68-75, 2014.
[18] Aliha, M.R.M. and Mousavi, SS., “Sub-Sized Short Bend Beam Configuration for the Study of Mixed-Mode Fracture,” Engineering Fracture Mechanics Vol. 225, 2020.
[19] Mirsayar, M. and Park, P., “Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces,” Journal of the mechanical behavior of biomedical materials, Vol. 59, pp. 236-240. 2016.
[20] Gladius, L., “Apparent Fracture Toughness of Acrylic Bone Cement: Effect of Test Specimen Configuration and Sterilization Method,” Biomaterials Vol. 20, pp. 69–78, 1999.
[21] Bokam, P. Germaneau, A. Rigoard, P. Vendeuvre, T. and Valle, V., “Evaluation of Fracture Properties of Cancellous Bone Tissues Using Digital Image Correlation/Wedge Splitting Test Method,” Journal of the Mechanical Behavior of Biomedical Materials Vol. 102, 2020.
[22] Mirsayar, M. Shi, X. and Zollinger, D. “Evaluation of interfacial bond strength between Portland cement concrete and asphalt concrete layers using bi-material SCB test specimen,” Engineering Solid Mechanics, Vol. 5, No. 4, pp. 293-306, 2017.
[23] Ajdani, A., Ayatollahi, M. R., Akhavan-Safar, A., & da Silva, L. F. M. “Mixed mode fracture characterization of brittle and semi-brittle adhesives using the SCB specimen,” International Journal of Adhesion and Adhesives, Vol. 101, 102629, 2020.
 [24] Aliha, M. R. M., Kucheki, H. G., & Mirsayar, M. “Mixed Mode I/II Fracture Analysis of Bi-Material Adhesive Bonded Joints Using a Novel Short Beam Specimen,” Applied Sciences, Vol. 11, No. 11, pp. 5232, 2021.
 [25] Mirsayar, M., “A modified maximum tangential stress criterion for determination of the fracture toughness in bi-material notches–Part 1: Theory,” Engineering Solid Mechanics, Vol. 2, No. 4, pp. 277-282, 2014.