نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکا نیک ، دانشگاه فنی و حرف های، تهران، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفها ن

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفها ن

10.22068/jstc.2021.527470.1715

چکیده

امروزه پنجره‌های هوشمند پایه پلیمری به واسطه قابلیت‌های نوری و دمایی خود به منظور کاهش مصرف انرژی در ساختمان مورد توجّه قرار گرفته‌اند. موضوع مهم در مورد این محصولات هوشمند، طراحی و ساخت بهینه آنها می‌باشد که محور اصلی مقاله حاضر را تشکیل می‌دهد. پنجره پیشنهادی به گونه‌ای عمل می‌کند که درصد عبور نور از پنجره به میزان تطابق ضریب شکست نانوسیال داخل پنجره و صفحات پلیمری وابسته است. همچنین فیلم نانوکامپوزیت جهت فراهم آوردن ویژگی خودتمیزشوندگی و رفتار فوتوکاتالیستی در سطوح خارجی مورد استفاده قرار گرفته است. مواد مورد استفاده شامل پلیمر پلی متیل متاکریلات (صفحات)، سیال متیل سالیسیلات، و نانوذرّات اکسید روی است. این مواد برای ساخت فیلم نانوکامپوزیت (نانوذرّات و پلیمر) و نانوسیّال (نانوذرّات و سیال) نیز مورد استفاده قرار گرفته‌اند. پس از انجام مراحل طراحی و ساخت، آزمایشات مشخّصه‌یابی به منظور تعیین خواص مکانیکی (استحکام کششی، چقرمگی، استحکام خمشی)، فیزیکی (زاویه تماس)، ساختاری (اندازه و شکل نانو ذرّات)، نوری (میزان عبور نور)، و حرارتی (محدوده‌های دمایی، ضریب انتقال حرارت) بیان شده است. همچنین عملکرد پنجره از لحاظ میزان مصرف انرژی و عبور نور، در یک تحلیل کمّی و به کمک دو پارامتر بی‌بعد نسبت عبور نور و تفاضل دما، مورد تحلیل و مقایسه با سایر پنجره‌های هوشمند قرار گرفته است. با توجّه به نتایج حاصل از این تحلیل، بازه تغییر شفافیت پنجره پیشنهادی بیش از 2 برابر حداکثر این مقدار برای سایر پنجره‌های هوشمند بوده، راندمان آن در حیطه مصرف انرژی و تعدیل دما در فصول گرم و سرد 2.1 برابر سایر پنجره‌های هوشمند بوده است.

کلیدواژه‌ها

عنوان مقاله [English]

Design and Characterization of Thermal and Optical Properties of Nano-Composite Self-Cleaning Refractive Transparent-Opaque Smart Window

نویسندگان [English]

  • Mehdi Jafari Vardanjani 1
  • Mohsen Safavi 2
  • Mehdi Karevan 3

1 Department of Mechanical Engineering, Technical and Vocational University, Tehran, Iran

2 Department of Mechanical Engineering, Esfahan University of Technology, Esfahan, Iran

3 Department of Mechanical Engineering, Esfahan University of Technology, Esfahan, Iran

چکیده [English]

Today, polymer-based smart windows have been considered for their thermal capabilities to reduce energy consumption in the buildings. The important issue about these smart products is their optimal design and construction which is the main focus of this study. The proposed window operates the way that the percentage of the light passing through the window depends on the degree of conformity of the refractive index of the nanofluid inside the window and the polymeric plates. Nanocomposite film has also been used to provide self-cleaning and photocatalytic behavior on the external surfaces. The materials used include polymethyl methacrylate (plates), methyl salicylate (fluid), and zinc oxide nanoparticles, which have been used to fabricate the nanocomposite, and nanofluid. After accomplishing the design and fabrication steps, characterization tests have been performed to determine mechanical (tensile strength, toughness, flexural strength), physical (contact angle), structural (size and shape of nanoparticles), optical (light transmission rate), and thermal (temperature ranges, heat transfer coefficient) properties. In addition, the performance of the window has been analyzed and compared with the other smart windows in terms of energy consumption and light transmission, in a quantitative analysis by two dimensionless parameters of light transmission ratio and temperature difference. According to the results, the range of variation in the transparency has been more than the maximum for other smart windows by 2 times while its energy consumption and temperature adjustment performance index has been higher than the other smart windows by 2.1 times.

کلیدواژه‌ها [English]

  • Smart window
  • Nano-composite
  • Light transmission
  • Self-cleaning
  • Refractive index
[1]  Allen, K., Connelly, K., Rutherford, P. and  Wu, Y., “Smart Windows—Dynamic Control of Building Energy Performance“ Energy and Buildings, Vol. 139, pp. 535-546, 2017.
[2]  Donaldson, L., “Cheaper and Easier Smart Windows“ Materials Today, Vol. 21, No. 6, pp. 584, 2018.
[3]  Sala, R. L., Gonçalves, R. H., Camargo, E. R. and  Leite, E. R., “Thermosensitive Poly(N-Vinylcaprolactam) as a Transmission Light Regulator in Smart Windows“ Solar Energy Materials and Solar Cells, Vol. 186, pp. 266-272, 2018.
[4]  Demir, M. M., Koynov, K., Akbey, Ü., Bubeck, C., Park, I., Lieberwirth, I. and  Wegner, G., “Optical Properties of Composites of Pmma and Surface-Modified Zincite Nanoparticles“ Macromolecules, Vol. 40, No. 4, pp. 1089-1100, 2007.
[5]  Hoffmann, S., Lee, E. S. and  Clavero, C., “Examination of the Technical Potential of near-Infrared Switching Thermochromic Windows for Commercial Building Applications“ Solar Energy Materials and Solar Cells, Vol. 123, pp. 65-80, 2014.
[6]  Warwick, M. E. A., Ridley, I. and  Binions, R., “The Effect of Transition Gradient in Thermochromic Glazing Systems“ Energy and Buildings, Vol. 77, pp. 80-90, 2014.
[7]  Li, X.-H., Liu, C., Feng, S.-P. and  Fang, N. X., “Broadband Light Management with Thermochromic Hydrogel Microparticles for Smart Windows“ Joule, Vol. 3, No. 1, pp. 290-302, 2019.
[8]  Piccolo, A. and  Simone, F., “Performance Requirements for Electrochromic Smart Window“ Journal of Building Engineering, Vol. 3, pp. 94-103, 2015.
[9]  Baetens, R., Jelle, B. P. and  Gustavsen, A., “Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review“ Solar Energy Materials and Solar Cells, Vol. 94, No. 2, pp. 87-105, 2010.
[10] Wu, C.-C., Liou, J.-C. and  Diao, C.-C., “Self-Powered Smart Window Controlled by a High Open-Circuit Voltage Ingan/Gan Multiple Quantum Well Solar Cell“ Chemical Communications, Vol. 51, No. 63, pp. 12625-12628, 2015.
[11] Chen, Z., Cao, C., Chen, S., Luo, H. and  Gao, Y., “Crystallised Mesoporous Tio2(a)–Vo2(M/R) Nanocomposite Films with Self-Cleaning and Excellent Thermochromic Properties“ Journal of Materials Chemistry A, Vol. 2, No. 30, pp. 11874-11884, 2014.
[12] Hu, K., Blair, A. D., Piechota, E. J., Schauer, P. A., Sampaio, R. N., Parlane, F. G. L., Meyer, G. J. and  Berlinguette, C. P., “Kinetic Pathway for Interfacial Electron Transfer from a Semiconductor to a Molecule“ Nature Chemistry, Vol. 8, No. 9, pp. 853-859, 2016.
[13] Wang, J., Zhang, L., Yu, L., Jiao, Z., Xie, H., Lou, X. W. D. and  Sun, X. W., “A Bi-Functional Device for Self-Powered Electrochromic Window and Self-Rechargeable Transparent Battery Applications“ Nature communications, Vol. 5, No. 1, pp. 1-7, 2014.
[14] Wu, L. Y. L., Zhao, Q., Huang, H. and  Lim, R. J., “Sol-Gel Based Photochromic Coating for Solar Responsive Smart Window“ Surface and Coatings Technology, Vol. 320, pp. 601-607, 2017.
[15] Feng, W., Zou, L., Gao, G., Wu, G., Shen, J. and  Li, W., “Gasochromic Smart Window: Optical and Thermal Properties, Energy Simulation and Feasibility Analysis“ Solar Energy Materials and Solar Cells, Vol. 144, pp. 316-323, 2016.
[16] Sabry, M., Eames, P. C., Singh, H. and  Wu, Y., “Smart Windows: Thermal Modelling and Evaluation“ Solar Energy, Vol. 103, pp. 200-209, 2014.
[17] Javad, K. and  Navid, G., “Thermal Comfort Investigation of Stratified Indoor Environment in Displacement Ventilation: Climate-Adaptive Building with Smart Windows“ Sustainable Cities and Society, Vol. 46, pp. 101354, 2019.
[18] Zettl, M., Mayer, O., Klampaftis, E. and  Richards, B. S., “Investigation of Host Polymers for Luminescent Solar Concentrators“ Energy Technology, Vol. 5, No. 7, pp. 1037-1044, 2017.
[19] Hammani, S., Barhoum, A. and  Bechelany, M., “Fabrication of Pmma/Zno Nanocomposite: Effect of High Nanoparticles Loading on the Optical and Thermal Properties“ Journal of Materials Science, Vol. 53, No. 3, pp. 1911-1921, 2018.
[20] Sun, D., Miyatake, N. and  Sue, H.-J., “Transparent Pmma/Zno Nanocomposite Films Based on Colloidal Zno Quantum Dots“ Nanotechnology, Vol. 18, pp. 215606, 2007.
[21] Dai Prè, M., Martucci, A., Martin, D. J., Lavina, S. and  Di Noto, V., “Structural Features, Properties, and Relaxations of Pmma-Zno Nanocomposite“ Journal of Materials Science, Vol. 50, No. 5, pp. 2218-2228, 2015.
[22] Kalantari, S., Amini, M. and  Shokoohfar, A., “Synthesis, Characterization and Application of Mesoporous Silica/Maghemite Nanocomposite in Removal of Heavy Metal Ions from Aqueous Solution“ Journal of Science and Technology of Composites, Vol. 7, No. 3, pp. 1013-1020, 2020.
[23] Kadkhodaee, M., Abdollah-zadeh, A., Assadi, H. and  Seraj, R. A., “Investigation of Tribological Properties of Zn/Zno Nanocomposite Targets Produced by Cold Spray Process“ Journal of Science and Technology of Composites, Vol. 7, No. 2, pp. 823-832, 2020.
[24] ASTM, “Annual Book of Astm Standards: Tests for Chemical, Physical, and Optical Properties ; Appearance. Paints, Related Coatings, and Aromatics. Paint“,  American Society for Testing and Materials, 2012.
[25] ASTM, “Volume 08.01 Plastics (I): C1147 D3159“,  ASTM International, 2012.
[26] ASTM, “Volume 08.02 Plastics (Ii): D3222-D5083“,  American Society for Testing and Materials, 2012.
[27] Soltani, M., Yousefpoor, M. and  Taherian, Z., “Design, Preparation, Characterization and Biological Investigation of Sodium Alginate/ Flourohydroxyapatite Composite Scaffold for Bone Tissue Engineering Application“ Journal of Science and Technology of Composites, Vol. 6, No. 3, pp. 481-490, 2019.
[28] ASTM, “Volume 08.03 Plastics (Iii): D5117 - Latest; Reinforced Plastic Piping Systems and Chemical Equipment; Plastic Building Products“,  American Society for Testing and Materials, 2016.
[29] ASTM, “Volume 06.01 Paint—Tests for Chemical, Physical, and Optical Properties; Appearance“,  American Society for Testing and Materials, 2018.
[30] ASTM, “Volume 05.06 Gaseous Fuels; Coal and Coke; Catalysts; Bioenergy and Industrial Chemicals from Biomass“,  American Society for Testing and Materials, 2017.
[31] Askarinejad, A., Alavi, M. and  Morsali, A., “Sonochemically Assisted Synthesis of Zno Nanoparticles: A Novel Direct Method“ Iran. J. Chem. Chem. Eng., Vol. 30, pp. 75-81, 2011.
[32] Mahdavi, R. and  Ashraf Talesh, S. S., “The Effect of Ultrasonic Irradiation on the Structure, Morphology and Photocatalytic Performance of Zno Nanoparticles by Sol-Gel Method“ Ultrasonics Sonochemistry, Vol. 39, pp. 504-510, 2017.
[33] Gopi, D., Kavitha, L., Ramya, S. and  Rajeswari, D., “Chapter 15 - Chemical and Green Routes for the Synthesis of Multifunctional Pure and Substituted Nanohydroxyapatite for Biomedical Applications“ in: A. M. Grumezescu, Engineering of Nano-biomaterials, Eds., pp. 485-521: William Andrew Publishing, 2016.
[34] ASTM, “Volume 03.01 Metals – Mechanical Testing; Elevated and Low-Temperature Tests; Metallography“,  American Society for Testing and Materials, 2015.
[35] ASTM, “Volume 14.02 Particle and Spray Characterization; Forensic Sciences; Accreditation & Certification; Forensic Psychophysiology; Nanotechnology; Forensic Engineering“,  American Society for Testing and Materials, 2019.
[36] Zebarjad, S., Sajjadi, S., Ebrahimi Sadrabadi, T., Yaghmaei, A. and  Naderi, B., “A Study on Mechanical Properties of Pmma/Hydroxyapatite Nanocomposite“ Engineering, Vol. 3, pp. 1, 2011.
[37] Kaspar, T., Ryan, J., Pantano, C., Rice, J., Trivelpiece, C., Hyatt, N., Corkhill, C., Mann, C., Hand, R., Kirkham, M., Crawford, C., Jantzen, C., Du, J., Lu, X., Harrison, M., Cushman, C., Linford, M. and  Smith, N., “Physical and Optical Properties of the International Simple Glass“ npj Materials Degradation, Vol. 3, 2019.
[38] Kasunic, K. J., “Optomechanical Systems Engineering“,  Wiley, 2015.
[39] Alhareb, A., Md Akil, H. and  Ahmad, Z., “Impact Strength, Fracture Toughness and Hardness Improvement of Pmma Denture Base through Addition of Nitrile Rubber/Ceramic Fillers“ The Saudi Journal for Dental Research, Vol. 8, 2016.
[40] Seldén, R., “Fracture Energy Measurements in Polycarbonate and Pmma“ Polymer Testing, Vol. 7, No. 3, pp. 209-222, 1987.
[41] Johnson, W., “Impact Strength of Materials“ 00466136 ed.,  Transport Research Laboratory, pp. 361, 1983.
[42] Onodera, Y., Kohara, S., Salmon, P. S., Hirata, A., Nishiyama, N., Kitani, S., Zeidler, A., Shiga, M., Masuno, A., Inoue, H., Tahara, S., Polidori, A., Fischer, H. E., Mori, T., Kojima, S., Kawaji, H., Kolesnikov, A. I., Stone, M. B., Tucker, M. G., McDonnell, M. T., Hannon, A. C., Hiraoka, Y., Obayashi, I., Nakamura, T., Akola, J., Fujii, Y., Ohara, K., Taniguchi, T. and  Sakata, O., “Structure and Properties of Densified Silica Glass: Characterizing the Order within Disorder“ NPG Asia Materials, Vol. 12, No. 1, pp. 85, 2020.
[43] Tsesarsky, M., Peled, A., Katz, A. and  Anteby, I., “Strengthening Concrete Elements by Confinement within Textile Reinforced Concrete (Trc) Shells – Static and Impact Properties“ Construction and Building Materials, Vol. 44, pp. 514–523, 2013.
[44] Ma, Y., Cao, X., Feng, X., Ma, Y. and  Zou, H., “Fabrication of Super-Hydrophobic Film from Pmma with Intrinsic Water Contact Angle Below 90°“ Polymer, Vol. 48, No. 26, pp. 7455-7460, 2007.
[45] Yadav, A., Prasad, V., Kathe, A. A., Raj, S., Yadav, D., Chandrasekaran, S. and  Nadanathangam, V., “Functional Finishing in Cotton Fabrics Using Zinc Oxide Nanoparticle“ Bulletin of Materials Science, Vol. 29, pp. 641-645, 2006.
[46] Sagadevan, S. and  Shanmugam, S., “A Study of Preparation, Structural, Optical, and Thermal Conductivity Properties of Zinc Oxide Nanofluids“ Journal of Nanomedicine & Nanotechnology, Vol. 2015, pp. 0-0, 2015.
[47] Huaxu, L., Fuqiang, W., Dong, L., Jie, Z. and  Jianyu, T., “Optical Properties and Transmittances of Zno-Containing Nanofluids in Spectral Splitting Photovoltaic/Thermal Systems“ International Journal of Heat and Mass Transfer, Vol. 128, pp. 668-678, 2019.
[48] Mohammed, M. I., “Optical Properties of Zno Nanoparticles Dispersed in Pmma/Pvdf Blend“ Journal of Molecular Structure, Vol. 1169, pp. 9-17, 2018.
[49] Soni, G., Gouttam, N. and  Soni, P., “Optical Properties of Pmma/Zno/Sio2 Composite Thin Film“ Materials Today: Proceedings, Vol. 30, pp. 35-38, 2020.
[50] Kim, D., Jeon, K., Lee, Y., Seo, J., Seo, K., Han, H. and  Khan, S., “Preparation and Characterization of Uv-Cured Polyurethane Acrylate/Zno Nanocomposite Films Based on Surface Modified Zno“ Progress in Organic Coatings, Vol. 74, No. 3, pp. 435-442, 2012.
[51] Carvill, J., “3 - Thermodynamics and Heat Transfer“  in: J. Carvill, Mechanical Engineer's Data Handbook, Eds., pp. 102-145, Oxford: Butterworth-Heinemann, 1993.
[52] Masoumi, A. A., Rahimi Sharbaf Moghadas, G. H. and  Liyaghat, G. H., “Transient Heat Transfer Analysis in Composite Metal Cylindrical Vessel Using the Layerwise Theory and Differential Quadrature Method“ Journal of Science and Technology of Composites, Vol. 4, No. 3, pp. 347-358, 2017.
[53] Cao, S., Zhang, S., Zhang, T., Yao, Q. and  Lee, J. Y., “A Visible Light-near-Infrared Dual-Band Smart Window with Internal Energy Storage“ Joule.
[54] Gyenes, T., Szilágyi, A., Lohonyai, T. and  Zrínyi, M., “Electrically Adjustable Thermotropic Windows Based on Polymer Gels“ Polymers for Advanced Technologies, Vol. 14, No. 11‐12, pp. 757-762, 2003.
[55] Wang, M., Gao, Y., Cao, C., Chen, K., Wen, Y., Fang, D., Li, L. and  Guo, X., “Binary Solvent Colloids of Thermosensitive Poly(N-Isopropylacrylamide) Microgel for Smart Windows“ Industrial & Engineering Chemistry Research, Vol. 53, No. 48, pp. 18462-18472, 2014.
[56] Kiruthika, S. and  Kulkarni, G. U., “Energy Efficient Hydrogel Based Smart Windows with Low Cost Transparent Conducting Electrodes“ Solar Energy Materials and Solar Cells, Vol. 163, pp. 231-236, 2017.