نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، مهندسی مکانیک، دانشگاه فنی و حرفه ای خراسان رضوی،مشهد

چکیده

در این مقاله به بررسی اثر شکل-ضربه زننده و نوع لایه‌چینی رویه صفحات ساندویچی کامپوزیتی تحت اثر ضربه وزنه‌افتان پرداخته شده‌است. هسته صفحه ساندویچی از نوع فوم آلومینیومی A356 تقویت‌شده با ذرات SiC تولید‌شده با استفاده از روش ذوبی به‌کمک عامل فوم‌ساز CaCO3 است. رویه صفحات از جنس شیشه‌اپوکسی با لایه‌چینی شبه‌همسانگرد، متعامد و نیز از لایه آلومینیومی خالص استفاده شده‌است. برای انجام آزمایش ضربه از دستگاه ضربه وزنه‌افتان و جهت بررسی اثر شکل ضربه‌زننده از سه نوع ضربه‌زننده کروی، سهموی و مخروطی استفاده شده‌است. برخی از پارامترهای موثر در ارزیابی رفتار مواد در بار ضربه شامل بیشینه نیروی‌برخورد، بیشینه جابجایی و مقدار انرژی ‌ویژه‌ جذب شده صفحه برای حالات مختلف با یکدیگر مقایسه شده‌است. نتایج بیانگر آن است که هر چه شعاع-انحنای ضربه‌زننده بیشتر باشد بیشینه نیروی‌برخورد بیشتر خواهد بود. همچنین صفحات با رویه کامپوزیتی شبه‌همسانگرد دارای بیشترین انرژی ‌ویژه جذب شده و صفحه با رویه آلومینیومی کمترین میزان انرژی ویژه جذب شده را به خود اختصاص داده‌است. در خصوص بیشینه نیروی‌برخورد و بیشینه جابجایی‌میانی صفحه، رویه متعامد عملکرد بهتری دارد. لذا بسته به کاربرد صفحات ساندویچی استفاده از رویه های کامپوزیتی (شبه‌همسانگرد یا متعامد) بجای رویه آلومینیومی در طراحی سازه-های جاذب انرژی توصیه می گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental study of the effect of impact shape and skin layout on the behavior of aluminum foam core sandwich panels at low velocity impact load

نویسنده [English]

  • Mohammad Amin Torabizadeh

Assistant professor, Faculty of Montazeri, Technical and Vocational University (TVU), Khorasan Razavi Branch, Mashhad, Iran.

چکیده [English]

In this paper, we investigated the effect of impactor shape and surface layer on composite sandwich plates under the impact of drop weight. The core material of the sandwich plate was A356 aluminum foam reinforced with SiC particles produced by the fusion method using the CaCO3 foam-forming agent. The plates were made of E-glass / epoxy with the quasi-isotropic and orthogonal layout as well as a pure aluminum layer. For the impact test, the drop weight impact device was used and to investigate the effect of the impactor shape spherical, parabolic and cone impactor manufactured. Some of the effective parameters for evaluating the material behavior under impact loads including maximum impact force, maximum displacement, and the amount of specific absorbed energy of the plate for different states, were investigated. The results showed that the higher the radius of impactor curvature, the greater the impact force would be. Also, the plates with a quasi-isotropic composite had the highest specific energy absorbed and the aluminum plate have the lowest amount of particular energy absorbed. In terms of maximum impact force and maximum mid-plate displacement, the cross-ply layout skin layer worked better. Therefore, depending on the application of sandwich plates, the use of composite skin (quasi-isotropic or cross-ply) surfaces instead of aluminum in the design of energy-absorbing structures was recommended.

کلیدواژه‌ها [English]

  • Low Velocity Impact
  • Composite Sandwich Sheet
  • Aluminum Foam
  • Impactor Shape
  • Layout
[1] Farahat H. “design and instrumentation of low velocity drop-weight impact testing machine for estimation of energy absorption capacity in aluminum based composite foam,” In Persian, Modarres Mechanical Engineering, Vol. 16, No. 7, pp. 219-228, 2016.
[2] Ghajar A.R. “effect of impactor shape and temperature on the behavior of Eglass/epoxy composite laminates,” In Persian, Modarres Mechanical Engineering, Vol. 14, No. 10, pp. 1-8, 2014.
[3] Caminero MA, García I, Rodríguez, GP, “Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fiber reinforced epoxy laminates,” Polymer Testing, Vol. 66, pp. 360-370, 2018.
[4]Wang H, Ramakrishnan KR, Shankar, K, “Experimental study of the medium velocity impact response of sandwich panels with different cores,” Materials & Design, Vol. 99, pp. 68-82, 2016.
[5] Long S, Yao X, Wang H, Zhang X, “Failure analysis and modeling of foam sandwich laminates under impact loading,” Composite Structures, Vol. 197, pp. 10-20, 2016.
[6]Emre AH, Kadir K, Karakuzu S, Demir M, Aykul H, “Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses,” World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering, Vol. 9, No. 5, pp. 596-601, 2015.
[7]Liu C, Zhang XY, Ye L, “High velocity impact responses of sandwich panels with metal fiber laminate skins and aluminum foam core,” International Journal of Impact Engineering, Vol. 100, pp. 139-153, 2017.
[8] Liu C, Zhang YX, Li J “Impact responses of sandwich panels with fiber metal laminate skins and aluminum foam core,” Composite Structures, Vol. 182, pp. 183-190, 2017.
[9] Crupi V, Kara E, Epasto G, Guglielmino E, Aykul H “Prediction model for the impact response of glass fiber reinforced aluminum foam sandwiches,” International Journal of Impact Engineering, Vol. 77, pp. 97-107, 2017.
[10]Cheng SL, Zhao XY, Xin YJ, Du SY, Li HJ “Quasi-static localized indentation tests on integrated sandwich panel of aluminum foam and epoxy resin,” Composite Structures, Vol. 129, pp. 157-164, 2015.
[11]Han MS, Cho JU, “Impact damage behavior of sandwich composite with aluminum foam core,” Trans. Nonferrous Met. Soc., Vol. 24, pp. 42-46, 2014.
[12]Rajaneesh A, Sridhar I, Rajendran S “Impact modeling of foam cored sandwich plates with ductile or brittle faceplates,” Composite Structures, Vol. 94, pp. 1745–1754, 2014.
[13]Babaei H., Mirzababaie T., Alitavoli M, “Study on the response of circular thin plate under low velocity impact,” Geomechanics and Engineering, Vol. 9, No. 2, pp. 207-218, 2015.
[14]Babaei H., Mirzababaie T., Alitavoli M, “Experimental study and analytical modeling for inelastic response of rectangular plates,” In Persian, Journal of Modares Mechanical Engineering, Vol. 15, No. 4, pp. 361-368, 2015.
[15]Jafari s, Rahnama S, “Numerical study of Energy Absorption in Composite Sandwich Structures under Low Velocity Impact,” In Persian, Journal of Solid and Fluid Mechanics, Vol. 7, No. 1, pp. 51-64, 2017.
[16]Farahat H, Ahmadi SY, “Studying the Behavior of A356/SiCp Composite Foam under Low-Velocity Impact Loading,” In Persian,   Journal of Solid and Fluid Mechanics, Vol. 7, No. 2, pp. 129-147, 2017.
[17] Paknejad R, Ashenai Ghasemi F, Malekzadeh Fard K, “The Effects of Arbitrary Boundary Conditions on a Laminated Composite Plate Response Subjected to Large Mass & Low Velocity Impact,” In Persian,  Journal of Solid and Fluid Mechanics, Vol. 8, No. 1, pp.  35-49, 2018.
[18]Torabizadeh MA, Shokrieh MM, Fereidoon A, “Dynamic failure behavior of glass/epoxy composites under low temperature using Charpy impact test method,” Indian Journal of Engineering & Materials Sciences, Vol. 18, pp. 211–220, 2011.
[19] Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. Annual Book of ASTM Standard, D7136, 2005.