نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، واحد مراغه، دانشگاه آزاد اسلامی، مراغه.

2 دانشیار، گروه مهندسی عمران، واحد مراغه، دانشگاه آزاد اسلامی ، مراغه.

3 استادیار، گروه مهندسی عمران، واحد تبریز، دانشگاه آزاد اسلامی ، تبریز.

10.22068/jstc.2021.128359.1661

چکیده

در تحقیق حاضر با استفاده از تست‌های تجربی و شبیه‌سازی المان محدود، رفتار بیرون کشیدگی الیاف حافظه‌دار شکلی از بتن پلیمری مطالعه می‌شود. جهت انجام شبیه‌سازی‌ها از روش المان محدود سه‌بعدی استفاده شده و رفتار سوپرالاستیک الیاف حافظه‌دار شکلی توسط سابروتین یومت در نرم‌افزار آباکوس تعریف می‌شود. به منظور در نظر گرفتن فرضیات واقع‌بینانه‌تر، اندرکنش الیاف و بتن با استفاده از مفهوم ناحیه انتقالی سطح مشترک شبیه‌سازی شده که پارامترهای آن با استفاده از روش المان محدود معکوس و استفاده از نتایج تست تجربی انجام پذیرفته بر روی یک نمونه الیاف به دست آمده است. پس از صحت‌سنجی نتایج با استفاده از تست‌های تجربی، تأثیر قطر و طول مدفون شدگی بر رفتار چسبندگی این نوع الیاف با بتن مطالعه شده است. در نهایت، به منظور بررسی عملکرد الیاف حافظه‌دار شکلی، رفتار بیرون کشیدگی این نوع الیاف با الیاف فولادی متناظر نیز مقایسه شده است. نتایج نشان می‌دهد برای الیاف با قطر 0.5mm، با افزایش طول مدفون شدگی از 10mm به 30mm نیروی بیرون کشیدگی برای الیاف حافظه‌دار شکلی و فولادی به ترتیب در حدود 17% و 12% افزایش می‌یابد. بر این اساس، مشاهده می‌شود که استفاده از الیاف حافظه‌دار شکلی پارامترهای مؤثر بیرون کشیدگی الیاف از بتن را تا حد قابل توجهی بهبود می‌بخشند که علت این امر را می‌توان در نیروهای چسبندگی سطحی قوی بین الیاف حافظه‌دار شکلی و بتن دانست.

کلیدواژه‌ها

عنوان مقاله [English]

Finite Element Analysis of the Adhesive behavior of Shape Memory Alloy fiber and Polymer Concrete

نویسندگان [English]

  • Amir Ebrahim Akbari Baghal 1
  • Ahmad Maleki 2
  • Ramin Vafaeipour Sorkhabi 3

1 Department of Civil Engineering, Maragheh Branch, Islamic Azad University, Maragheh, Iran.

2 Department of Civil Engineering, Maragheh Branch, Islamic Azad University, Maragheh, Iran.

3 Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

چکیده [English]

In the present study, the pullout behavior of shape memory alloy fibers and concrete was studied. To perform the simulations, a three-dimensional finite element method was used and the supralastic behavior of shape memory fibers was defined using UMAT subroutine in ABAQUS software. In order to consider more realistic assumptions, the interaction between fibers and concrete has been simulated using the concept of transitional area of the contact surface. The contact surface parameters were obtained using the inverse finite element method and experimental test data performed on a fiber sample. After validating the results using experimental testing, the effect of diameter parameters and embedded length on the adhesive behavior of this type of fiber with concrete has been studied. Finally, in order to evaluate the performance of shape memory fiber fibers, the pullout behavior of this type of fiber has been compared with the corresponding steel fibers. The results show that for fibers with a diameter of 0.5 mm, with increasing the embedded length from 10 mm to 30 mm, the pullout strength for SMA and steel fibers increases by about 17% and 12%, respectively. Based on this, it was observed that the use of shape memory fibers significantly improves the effective pullout parameters of fiber from concrete, which can be attributed to the strong surface adhesion forces between shape memory fibers and concrete.

کلیدواژه‌ها [English]

  • Shape memory alloy fibers
  • Pullout behavior
  • Concrete
  • Finite element method
  • Adhesive force
[1] Vahidi Pashaki, P., Pouya, M. and  Maleki, V. A., “High-Speed Cryogenic Machining of the Carbon Nanotube Reinforced Nanocomposites: Finite Element Analysis and Simulation“ Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232, No. 11, pp. 1927-1936, 2018.
[2] Ghaderi, M., Maleki, V. A. and  Andalibi, K., “Retrofitting of Unreinforced Masonry Walls under Blast Loading by Frp and Spray on Polyurea“ Fen Bilimleri Dergisi (CFD), Vol. 36, No. 4, 2015.
[3] Aghamohammadi, H., Abbandanak, S. N. H. and  Siadati, S. M. H., “Effect of Various Surface Treatment Methods on the Flexural Properties of Fiber Metal Laminates“ Journal of Science and Technology of Composites, Vol. 6, No. 4, pp. 495-502, 2020. (In Persian)
[4] kamani, R., Kamali Dolatabadi, M., Asghharian Jeddi, A. A. and  Nasrollahzadeh, K., “Increasing the Efficiency of Carbon Fiber Bundles in Reinforcing Fine Grained Concrete: An Experimental Study of Flexural Bearing Capacity“ Journal of Science and Technology of Composites, Vol. 6, No. 2, pp. 310-318, 2019. (In Persian)
[5] A, S. and  Kabir, M., Numerical study of the effect of glass fiber sizing reinforcement by randomly distributed CNTs on the glass/epoxy composite transverse mechanical properties', Journal of Science and Technology of Composites, Journal of Science and Technology of Composites, Vol. 1, No. 1, pp. 45-52, 2014. (In Persian)
[6] Sui, L., Luo, M., Yu, K., Xing, F., Li, P., Zhou, Y. and  Chen, C., “Effect of Engineered Cementitious Composite on the Bond Behavior between Fiber-Reinforced Polymer and Concrete“ Composite Structures, Vol. 184, pp. 775-788, 2018.
[7] Abbass, W., Khan, M. I. and  Mourad, S., “Evaluation of Mechanical Properties of Steel Fiber Reinforced Concrete with Different Strengths of Concrete“ Construction and Building Materials, Vol. 168, pp. 556-569, 2018.
[8] Leone, M., Centonze, G., Colonna, D., Micelli, F. and  Aiello, M., “Fiber-Reinforced Concrete with Low Content of Recycled Steel Fiber: Shear Behaviour“ Construction and Building Materials, Vol. 161, pp. 141-155, 2018.
[9] Wille, K., Naaman, A. E., El-Tawil, S. and  Parra-Montesinos, G. J., “Ultra-High Performance Concrete and Fiber Reinforced Concrete: Achieving Strength and Ductility without Heat Curing“ Materials and structures, Vol. 45, No. 3, pp. 309-324, 2012.
[10] Abdallah, S., Fan, M. and  Rees, D. W., “Analysis and Modelling of Mechanical Anchorage of 4d/5d Hooked End Steel Fibres“ Materials & Design, Vol. 112, pp. 539-552, 2016.
[11] Abazadeh, B. and  Azimpour Shishevan, F., “An Experimental Investigation of the Low Velocity Impact Behavior of Woven Carbon-Fiber-Epoxy Composites“ Journal of Science and Technology of Composites, Vol. 6, No. 4, pp. 571-580, 2020.
[12] Adli, A., Shelesh-Nezhad, K., Khoshravan Azar, M. R. and  Mohammadi-Aghdam, M., “The Effect of Vascular Self-Healing Orientation on Healing Efficiency of Epoxy/Glass Fiber Composite“ Journal of Science and Technology of Composites, Vol. 6, pp. 32-43, 2020. (In Persian)
[13] Abdollahi, M., Fallahnejad, M. and  Zamani, A., “Investigation the Flexural Behavior of Fiber Metal Laminates Containing Glass and Kevlar Fibers Subjected to Thermal Cycling“ Journal of Science and Technology of Composites, Vol. 7, No. 1, pp. 54-67, 2020. (In Persian)
[14] Abdallah, S. and  Rees, D. W., “Comparisons between Pull-out Behaviour of Various Hooked-End Fibres in Normal–High Strength Concretes“ International Journal of Concrete Structures and Materials, Vol. 13, No. 1, pp. 27, 2019.
[15] Ellis, B., McDowell, D. and  Zhou, M., “Simulation of Single Fiber Pullout Response with Account of Fiber Morphology“ Cement and Concrete Composites, Vol. 48, pp. 42-52, 2014.
[16] Alwan, J. M., Naaman, A. E. and  Guerrero, P., “Effect of Mechanical Clamping on the Pull-out Response of Hooked Steel Fibers Embedded in Cementitious Matrices“ Concrete Science and Engineering, Vol. 1, No. 1, pp. 15-25, 1999.
[17] Yoo, D.-Y. and  Kim, S., “Comparative Pullout Behavior of Half-Hooked and Commercial Steel Fibers Embedded in Uhpc under Static and Impact Loads“ Cement and Concrete Composites, Vol. 97, pp. 89-106, 2019.
[18] Cunha, V. M., Barros, J. A. and  Sena-Cruz, J. M., “Pullout Behavior of Steel Fibers in Self-Compacting Concrete“ Journal of Materials in Civil Engineering, Vol. 22, No. 1, pp. 1-9, 2009.
[19] Khalili, S. M. and  Saeedi, A., “Micromechanics Modeling and Experimental Characterization of Shape Memory Alloy Short Wires Reinforced Composites“ Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 1-6, 2015. (In Persian)
[20] Mojabi, S. S. and  Kheirikhah, M. M., “Modeling and Intelligent Control of Vibration of Cantilever Composite Plate Embedded with Shape Memory Alloy Wires“ Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 363-374, 2018. (In Persian)
[21] Osfouri, M., Rahmani, O. and  Zamani, M. R., “An Experimental Investigation on Nitinol Shape Memory Alloy Reinforced Glares against Charpy Low Velocity Impact“ Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 403-414, 2018. (In Persian)
[22] Khalili, S. M. R. and  Akbari, T., “An Investigation on the Static Buckling Behavior of Laminated Cylindrical Composite Shells with Embedded Sma Wires by Experiment“ Journal of Science 
and Technology of Composites, Vol. 5, No. 4, pp. 551-564, 2019. (In Persian)
[23] Chang, W. S. and  Araki, Y., “Use of Shape-Memory Alloys in Construction: A Critical Review“ in Proceeding of  ICE Publishing, pp. 87-95, 2018.
[24] Khalili, S. M. R., Poormir, M. A. and  Eslami-Farsani, R., “An Experimental Investigation on Tensile Properties of Self-Healing Metal Matrix Composite Reinforced by Superelastic Niti Wires Using Taguchi Method“ Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 1-8, 2019. (In Persian)
[25] Freed, Y., Aboudi, J. and  Gilat, R., “Thermomechanically Micromechanical Modeling of Prestressed Concrete Reinforced with Shape Memory Alloy Fibers“ Smart materials and structures, Vol. 16, No. 3, pp. 717, 2007.
[26] Alam, M. S., Youssef, M. A. and  Nehdi, M., “Analytical Prediction of the Seismic Behaviour of Superelastic Shape Memory Alloy Reinforced Concrete Elements“ Engineering Structures, Vol. 30, No. 12, pp. 3399-3411.
[27] Abdulridha, A. and  Palermo, D., “Behaviour and Modelling of Hybrid Sma-Steel Reinforced Concrete Slender Shear Wall“ Engineering Structures, Vol. 147, pp. 77-89, 2017.
[28] Moser, K., Bergamini, A., Christen, R. and  Czaderski, C., “Feasibility of Concrete Prestressed by Shape Memory Alloy Short Fibers“ Materials and structures, Vol. 38, No. 5, pp. 593-600, 2005.
[29] Zhou, B., Yoon, S.-H. and  Leng, J.-S., “A Three-Dimensional Constitutive Model for Shape Memory Alloy“ Smart Materials and Structures, Vol. 18, No. 9, pp. 32-45, 2009.
[30] Fugazza, D., “Experimental Investigation on the Cyclic Properties of Superelastic Niti Shape-Memory Alloy Wires and Bars" Individual study, European School for Advanced Studies in Reduction of Seismic Risk ROSE School, Pavia, Italy, 2005.