نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه علم و صنعت ایران، دانشکده مهندسی مکانیک، تهران، ایران

2 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

آلیاژهای حافظه‌دار نوعی خاص از مواد حافظه‌دار هستند که با افزایش دما می‌توانند تغییر شکل‌های بزرگ را بازیابی کرده و به شکل اولیه خود بازگردند. در این مطالعه شبیه‌سازی عددی رفتار ترمومکانیکی کامپوزیت‌های تقویت شده با آلیاژهای حافظه‌دار تحت بارگذاری استاتیکی و تک محوره، انجام شده است. با قرار دادن سیم‌های حافظه‌دار درون کامپوزیت اولیه، رفتار مایکرومکانیکی کامپوزیت به‌صورت یک منحنی دوخطی مشاهده می‌شود که علت آن تبدیل فاز درون سیم‌های حافظه‌دار و غیرخطی بودن رفتار کامپوزیت اولیه می‌باشد. پس از شبیه‌سازی به‌منظور صحت‌سنجی، از نتایج آزمایشگاهی موجود در مرور ادبیات استفاده شده است. پس از اعتبار‌سنجی مدل، اثر عوامل مختلف مانند: مقدار پیش‌کرنش سیم‌ها، اثر دمای بارگذاری و شرایط سطح تماس میان سیم‌های حافظه‌دار و ماتریس اپوکسی بررسی شده است. همچنین یک روش تئوری برای محاسبه کرنش فشاری و کششی موجود در کامپوزیت و سیم‌ها، پس از رهاسازی سیم‌های پیش‌کشیده ارایه شده است. بر اساس نتایج به‌دست آمده، در نظر گرفتن چسبندگی سطحی ضعیف میان سیم حافظه‌دار و ماتریس زمینه باعث نزدیکی نتایج شبیه‌سازی شده به نتایج آزمایشگاهی نسبت به حالت چسبندگی بین‌سطحی کامل، شد. افزودن پیش‌کرنش به سیم‌های حافظه‌دار باعث ایجاد تنش فشاری اولیه درون کامپوزیت شده و مقدار آن با افزایش دما بیشتر نیز می‌شود اما این پدیده، جدایش بین‌سطحی میان سیم‌های حافظه‌دار و ماتریس را نیز افزایش می‌دهد. بنابراین در طراحی کامپوزیت‌های تقویت‌شده با سیم‌های حافظه‌دار، باید برای مقادیر پیش‌کرنش اعمال‌شده به سیم‌های حافظه‌دار و دمای کاری کامپوزیت، مقادیر بهینه‌ای انتخاب شود.

کلیدواژه‌ها

عنوان مقاله [English]

Simulation of thermo-mechanical behavior of glass-epoxy composites containing shape memory alloy under static loading

نویسندگان [English]

  • Fathollah Taheri-Behrooz 1
  • Ali Kiani 2

1 Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2 Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

Shape Memory Alloys (SMAs) are a type of Shape Memory Materials (SMMs) which can recover large deformation and return to their primary shape by rising temperature. In this study, numerical simulation of thermo mechanical behavior of composites reinforced with shape memory alloys under static uniaxial loading was conducted. By inserting SMA wires inside the host composite the macro mechanical behavior of hybrid composite changed to a bilinear curve which is due to the phase transformation of SMA wires and nonlinear behavior of host composite. Simulated results are compared with available data in the literature. Validated model is used to evaluate the effect of various parameters as, wires pre-strain, temperature, interface conditions between SMA wires and Epoxy matrix on hybrid composite behavior. Also a theoretical method was developed to calculate the compressive and tensile strain induced in host composites and wires, after releasing of SMA wires. According to the results obtained, considering weak interface between SMAs wires and matrix improved simulation results rather than perfect bonding assumption. Pre-strained SMA wires would cause initial compressive stress in the host composite and its value will increased by increasing service temperature, however, it will increased interface separation of SMA and host materials, too. Therefore, in design of Shape memory alloys hybrid composites, optimum amount of applied pre-strain on SMA wires and working temperature should be selected.
 

کلیدواژه‌ها [English]

  • Shape memory alloy
  • Composite
  • Pre-strain
  • Weak interface bonding
 
[1]    Taheri-Behrooz, F. Taheri, F. and Hosseinzadeh, R., “Characterization of a Shape Memory Alloy Hybrid Composite Plate Subject to Static Loading,” Materials and Design, Vol. 32, No. 5, pp. 2923–2933, 2011.
[2]    Aurrekoetxea, J. Zurbitu, J. De Mendibil, I. O. Agirregomezkorta, A. Sánchez-Soto, M. and Sarrionandia, M., “Effect of Superelastic Shape Memory Alloy Wires on the Impact Behavior of Carbon Fiber Reinforced in Situ Polymerized Poly(Butylene Terephthalate) Composites,” Materials Letters, Vol. 65, No. 5, pp. 863–865, 2011.
[3]    Cho, H. K. and Rhee, J., “Nonlinear Finite Element Analysis of Shape Memory Alloy (SMA) Wire Reinforced Hybrid Laminate Composite Shells,” International Journal of Non-Linear Mechanics, Vol. 47, No. 6, pp. 672–678, 2012.
[4]    Ni, Q. Q. Zhang, R. X. Natsuki, T. and Iwamoto, M., “Stiffness and Vibration Characteristics of SMA/ER3 Composites with Shape Memory Alloy Short Fibers,” Composite Structures, Vol. 79, No. 4, pp. 501–507, 2007.
[5]    Lau, K. T. Chan, A. W. L. Shi, S. Q. and Zhou, L. M., “Debond Induced by Strain Recovery of an Embedded NiTi Wire at a NiTiepoxy Interface: Micro-Scale Observation,” Materials and Design, Vol. 23, No. 3, pp. 265–270, 2002.
[6]    Shimamoto, A. Ohkawara, H. and Nogata, F., “Enhancement of Mechanical Strength by Shape Memory Effect in TiNi Fiber-Reinforced Composites,” Engineering Fracture Mechanics, Vol. 71, No. 18, pp. 737–746, 2004.
[7]    Lee, J. K. and Taya, M., “Strengthening Mechanism of Shape Memory Alloy Reinforced Metal Matrix Composite,” Scripta Materialia, Vol. 51, No. 5, pp. 443–447, 2004.
[8]    Raghavan, J. Bartkiewicz, T. Boyko, S. Kupriyanov, M. Rajapakse, N. and Yu, B., “Damping, Tensile, and Impact Properties of Superelastic Shape Memory Alloy (SMA) Fiber-Reinforced Polymer Composites,” Composites Part B: Engineering, Vol. 41, No. 3, pp. 214–222, 2010.
[9]    Lei, H. Wang, Z. Zhou, B. Tong, L. and Wang, X., “Simulation and Analysis of Shape Memory Alloy Fiber Reinforced Composite Based on Cohesive Zone Model,” Materials and Design, Vol. 40, pp. 138–147, 2012.
[10] Lei, H. Wang, Z. Tong, L. Zhou, B. and Fu, J., “Experimental and Numerical Investigation on the Macroscopic Mechanical Behavior of Shape Memory Alloy Hybrid Composite with Weak Interface,” Composite Structures, Vol. 101, pp. 301–312, 2013.
[11] Antico, F. Zavattieri, P. Jr, L. H. Mance, A. Rodgers, W. and Okonski, D., “Adhesion of Nickel–Titanium Shape Memory Alloy Wires to Thermoplastic Materials: Theory and Experiments,” Smart Materials and Structures, Vol. 21, No. 3, pp. 035022, 2012.
[12] Poon, C. K. Lau, K. T. and Zhou, L. M., “Design of Pull-Out Stresses for Prestrained SMA Wire/Polymer Hybrid Composites,” Composites Part B: Engineering, Vol. 36, pp. 25-31, 2005.
[13] Wang, Y. Zhou, L. Wang, Z. Huang, H. and Ye, L., “Stress Distributions in Single Shape Memory Alloy Fiber Composites,” Materials & Design, Vol. 32, pp. 3783-3789, 2011.
[14] Khalili, S. M. R. Saeedi, A. and Fakhimi, E., “Evaluation of the Effective Mechanical Properties of Shape Memory Wires/Epoxy Composites Using Representative Volume Element,” Journal of Composite Materials, p. 0021998315596453, 2015.
[15] Wang, X. and Hu, G., “Stress Transfer for a SMA Fiber Pulled Out From an Elastic Matrix and Related Bridging Effect,” Composites Part A: Applied Science and Manufacturing, Vol. 36, pp. 1142-1151, 2005.
[16] Kushch, V. Shmegera, S. Brondsted, P. and Mishnaevsky, L., “Numerical Simulation of Progressive Debonding in Fiber Reinforced Composite Under Transverse Loading,” International Journal of Engineering Science, Vol. 49, pp. 17-29, 2011.
[17] Dawood, M. El-Tahan, M. and Zheng, B., “Bond Behavior of Superelastic Shape Memory Alloys to Carbon Fiber Reinforced Polymer Composites,” Composites Part B: Engineering, Vol. 77, pp. 238-247, 2015.
[18] Payandeh, Y. Meraghni, F. Patoor, E. and Eberhardt, A., “Effect of Martensitic Transformation on the Debonding Propagation in Ni–Ti Shape Memory Wire Composite,” Materials Science and Engineering: A, Vol. 518, pp. 35-40, 2009.
[19] Payandeh, Y. Meraghni, F. Patoor, E. and Eberhardt, A., “Debonding Initiation in a NiTi Shape Memory Wire–Epoxy Matrix Composite. Influence of Martensitic Transformation,” Materials & Design, Vol. 31, pp. 1077-1084, 2010.
[20] Liang, C. and Rogers, C. A., “One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials,” Journal of intelligent material systems and structures, Vol. 1, No. 2, pp. 207–234, 1990.
[21] Tanaka, K. Kobayashi, S. and Sato, Y., “Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys,” International Journal of Plasticity, Vol. 2, No. 1, pp. 59-72, 1986.
[22] Ivshin, Y. and Thomas, J. P., “A Thermomechanical Model for a One Variant Shape Memory Material,” Journal of intelligent material systems and structures, Vol. 5, No. 4, pp. 455-473, 1994.
[23] Brinson, L. C., “One-Dimensional Constitutive Behavior of Shape Memory  Alloys: Thermomechanical Derivation with Non-constant Material Functions and Redefined Martensite Internal Variable,” Journal of intelligent material systems and structures, Vol. 4, No. 2, pp. 229-242, 1996.
[24] Boyd, J. G. and Lagoudas, D. C., “A Thermodynamical Constitutive Model for Shape Memory Materials,” Part I, the monolithic shape memory alloy, International Journal of Plasticity,Vol. 12, No. 6, pp. 805-842, 1996.
[25]  Boyd, J. G. and Lagoudas, D. C., “A Thermodynamical Constitutive Model for Shape Memory Materials,” Part II, the SMA composite material, International Journal of Plasticity, Vol. 12, No. 7, pp. 843-873,1996.
[26]  Auricchio, F. and Taylor, R. L., “Shape-Memory Alloys: Modelling And Numerical Simulations Of The Finite-Strain Superelastic Behavior,” Computer methods in applied mechanics and engineering, Vol. 143, No. 1, pp. 175-194,1997.
[27]  Tomblin, J. McKenna, J. Ng, Y. and Raju, K. S., “Advanced General Aviation Transport Experiments,” 2001.
[28] Auricchio, F., “A Robust Integration-Algorithm for a Finite-Strain Shape-Memory-Alloy Superelastic Model,” International Journal of plasticity, Vol. 17, No. 7, pp. 971-990,2001.
[29] Auricchio, F. Taylor, R. L. and Lubliner, J., “Shape Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior,” Computer methods in applied mechanics and engineering, Vol. 146, No. 3, pp. 281-312,1997.
[30]  Souza, A. C. Mamiya, E. N. and Zouain, N., “Three-Dimensional Model for Solids Undergoing Stress-Induced Phase Transformations,” European Journal of Mechanics-A/Solids, Vol. 17, No. 5, pp. 789-806,1998.
[31]  Auricchio, F. and Petrini, L., “Improvements and Algorithmical Considerations on a Recent Three-Dimensional Model Describing Stress-Induced Solid Phase Transformations,” International Journal for numerical methods in engineering, Vol. 55, No. 11, pp. 1255-1284,2002.
[32] Boulevard, B., “Memry Corp, High Temperature Shape Memory Nitinol Alloy,” http://www.memry.com / products - services / melting / nitinol - alloys, available in 10, March 2012
[33] Liang, C and Rogers, C. A., “One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials,” Journal of intelligent material systems and structures, Vol. 1, No. 2, pp. 207-234, 1990.
[34] Alfano, G. and Crisfield, M., “Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues,” International journal for numerical methods in engineering, Vol. 50, pp. 1701-1736, 2001.