نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار،دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران ، تهران، ایران

2 کارشناسی ارشد،دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران ، ایران

چکیده

نسبت مقاومت و سفتی به وزن بالا، از مهم‌ترین مزیت‌های کامپوزیت‌ها بوده که باعث کاربرد گسترده این مواد در صنایع مختلف شده است. کامپوزیت‌ها به‌دلیل وجود مکانیزم‌های آسیب مختلف و نرخ متفاوت رشد و تأثیر این مکانیزم‌ها بر یکدیگر نسبت به فلزات دارای پیچیدگی بیشتری می‌باشد. در این مقاله، به‌‌منظور پیش‌بینی عمر خستگی و شبیه‌سازی افت سفتی در چندلایه‌های کامپوزیتی تحت بارگذاری خستگی مدلی مبتنی بر مکانیک خرابی محیط‌های پیوسته توسعه داده شده است. متغیرهای آسیب برای شبیه‌سازی افت خواص الاستیک در رزین، الیاف و جهت برشی در نظر گرفته می‌شوند. ثابت‌های مادی در قوانین رشد آسیب رزین، الیاف و جهت برشی، از آزمایشات روی چند‌لایه‌های تک‌جهته ،  و چندلایه متعامد  قابل استخراج می‌باشد. به‌منظور ارزیابی مدل در بارگذاری چندجهته، نسبت‌های تنش متفاوت و وضعیت‌های تنش دلخواه از نتایج تجربی در دسترس بر روی چند‌لایه‌های تک‌جهته کامپوزیتی ،  و  تحت بارگذاری کششی استفاده شده است. همچنین به‌منظور ارزیابی مدل برای چندلایه‌های کامپوزیتی دارای تمرکز تنش از نتایج آزمایشی بر روی چندلایه متعامد  و تحت بارگذاری پین استفاده شده است. نتایج حاصل بیانگر توانایی مدل در پیش‌بینی عمر خستگی چند‌لایه‌های تک‌جهته و متعامد کامپوزیتی تحت بارگذاری تک‌جهته و چند‌جهته و در وضعیت‌های مختلف تنش می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Fatigue life prediction of laminated composites under multiaxial fatigue loading condition by using developed continuum damage mechanics model

نویسندگان [English]

  • Bijan Mohammadi 1
  • Babak Fazlali 2

1 Departmen of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

2 Departmen of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

چکیده [English]

One of the main advantages for the increasing engineering application of composites in weight-critical structural applications is their high specific stiffness and strength. Composite materials behavior is complicated more than metallic material because of different mechanisms, damage growth rate and effect of them in each other. In this paper, a continuum damage mechanics based model is developed to simulate stiffness degradation and fatigue life prediction of laminated composites under fatigue loading conditions. Damage parameters are used to estimate the degradation of elastic properties in matrix, fiber and shear direction. The material properties of the damage evolution equations are derived by testing on 0° and 90° unidirectional plies and  cross-ply laminate. To evaluate the model under multiaxial fatigue loading, arbitrary states of stress and stress ratio available results of experiments on unidirectional 90 , 0  and 30  plies under fatigue loading conditions are used. Also, to evaluate the model for composite laminates with stress concentration results of experiments of pin-loaded cross-ply  laminate are used. The obtained results show the capability of proposed model in fatigue life prediction of unidirectional and cross-ply laminates under uniaxial and multiaxial fatigue loading with different states of stress.

کلیدواژه‌ها [English]

  • Continuum damage mechanics
  • Life prediction
  • Stiffness degradation
  • Laminated composites
 [1]   Hashin, Z. and Rotem, A., “A Fatigue Criterion for Fibre Reinforced Composite Materials,” Journal of Composite Materials, Vol. 7, pp. 448–464, 1973.
 [2]   Lawrence Wu, CM., “Thermal and Mechanical Fatigue Analysis of CFRP Laminates,” Composite Structures, Vol. 25, pp. 339–344, 1993.
[3]    Fawaz, Z. and Ellyin, F., “Fatigue Failure Model for Fibrereinforced Materials under General Loading Conditions,” Journal of Composite Materials, Vol. 28, pp. 1432–1451, 1994.
[4]    Degrieck, J. and Van Paepegem, W., “Fatigue Damage Modeling of Fibre-Reinforced Composite Materials,” Review. ApplMech Rev, Vol. 54, No. 4, pp. 279–299, 2001.
[5]    Halpin, JC. Jerina, KL. and Johnson, TA., “Characterization of Composites for the Purpose of Reliability Evaluation in Analysis of the Test Methods for High Modulus Fibers and Composites,” ASTM STP, Vol. 521, pp. 5–64, 1973.
[6]    Daniel, IM. and Charewicz, A., “Fatigue Famage Mechanisms and Residual Properties of Graphite/Epoxy Laminates,” Engineering Fracture Mechanics, Vol. 25, pp. 793–808, 1986.
 [7]   Whitworth, H A., “Modeling Stiffness Reduction of Graphite Epoxy Composite Laminates,” Journal of Composite Materials, Vol. 21, pp. 362–372, 1987.
[8]    Wu, F. and Yao, W., "A Fatigue Damage Model of Ccomposite Materials," International Journal of Fatigue, Vol. 32, pp. 134‐138, 2010.
[9]    Shokrieh, MM. and Lessard. LB., “Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling,” Journal of Composite Materials, Vol. 34, pp. 1056–1080, 2000.
[10]  Shokrieh, MM. and Lessard, LB., “Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Verification,” Journal of Composite Materials, Vol. 34, pp. 1081–1116, 2000.
[11]  Barbero, EJ. and Cortes, DH., “A Mechanistic Model for Transverse Damage Initiation, Evolution, and Stiffness Reduction in Laminated Composites,” Composites: Part B, Vol. 41, pp. 124-132, 2010.
[12]  Barbero, EJ. and Cosso, FA.; “Determination of Material Parameters for Discrete Damage Mechanics Analysis of Carbon-Epoxy Laminates,” Composites: Part B, Vol. 56, pp. 638–646, 2014.
[13]  Vinogradov, V. and Hashin, Z., “Variational Analysis of Cracked Angle-Ply Laminates,” Compsites Science and Technology, Vol. 70, pp.638-646, 2010.
[14]  Hajikazemi, M. Sadr, M.H. and Talreja, R.,” Variational Analysis of Cracked General Cross-ply Laminates under Bending and Biaxial Extension," International Journal of Damage Mechanics, pp. 1-43, 2015.
[15]  McCartney, LN., “Model to Predict Effects of Triaxial Loading on Ply Cracking in General Symmetric Laminates,” Compsites Science and Technology, Vol. 60, pp. 2255-2279, 2000.
[16]  McCartney, LN., “Energy Methods for Fatigue Damage Modeling of Laminates,” Compsites Science and Technology, Vol. 68, pp. 2601-2615, 2008.
[17]  Talreja, R., “Stiffness Properties of Composite Laminates with Matrix Cracking and Interior Delamination,” Engineering Fracture Mechanics, Vol. 25, pp. 751–762, 1986.
[18]Movaghghar, A. and Lvov, G.I., "An Energy Model for Fatigue Life Prediction of Composite Materials Using Continuum Damage Mechanics," Applied Mechanics and Materials, Vol. 110, pp. 1353‐1360, 2012.
[19]  Salimi Majd, D. Helmi, M. and Mohammadi, B., “Damage Growth Prediction of Unidirectional Layered Composites under Cyclic Loading Using an Energy Based Model,” In Persian, Modares Mechanical Engineering, Vol. 15, No. 7, pp. 173-180, 2015.
[20]  Shi, W. Hu, W. Zhang, M. and Meng, Q., “A Damage Mechanics Model for Fatigue Life Prediction of Fibre Reinforced Polymer Composite Lamina,” Acta Mechanica Solida Sinica, Vol. 24, pp. 399-410, 2011.
[21]  Mohammadi, B. Fazlali, B. and Madoliat, R., “Fatigue Life Prediction of Symmetric Cross-Pply Laminated Composite Using a Developed Continuum Damage Mechanics Based Model,” In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 13-22, 2015.
[22]  Herakovich, CT., “Plane Stress Constitutive Equations.” In: Herakovich CT, Mechanics of Fibrous Composites, John Wiley & Sons, Inc., New York, pp. 78-109, 1998.
[23]  Herakovich, CT., “Micromechanics.” In: Herakovich CT, Mechanics of Fibrous Composites, John Wiley & Sons, Inc., New York, pp. 402-448, 1998.
[24]  Herakovich, CT., “Failure and Damage.” In: Herakovich CT, Mechanics of Fibrous Composites, John Wiley & Sons, Inc., New York, pp. 402-448, 1998.
[25]  Barbero, EJ., “Damage Mechanics.” In: Barbero EJ, Finite Element of Composite Materials, Boca Raton: CRC Press, pp. 191-228, 2008.