نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی ‌کارشناسی‌ارشد، مهندسی صنایع گرایش بهینه‌سازی ‌سیستم‌ها، دانشگاه علم و صنعت ایران، تهران.

2 دانشیار، مهندسی صنایع، دانشگاه علم و صنعت، تهران.

3 استاد، مهندسی صنایع، دانشگاه علم و صنعت، تهران.

چکیده

تولید قطعات با استفاده از چاپ سه‌بعدی که نوعی از تولید‌افزایشی می‌باشد، با سرعت بیشتری در حال گسترش است. این فناوری با رسوب لایه‌لایه‌ی ماده پلیمری ذوب شونده قادر به تولید هندسه‌های پیچیده است. پلی‌لاکتیک اسید(PLA) به دلیل خواص خوبی مانند زیست-تخریب‌پذیر‌بودن و زیست‌سازگاری از جمله مواد پرکاربرد در این فناوری است که قطعات ساخته‌شده از آن در کاربردهای مختلف مهندسی در حال استفاده می‌باشد. استحکام این قطعات لایه‌لایه‌ای تابع پارامترهای چاپ مانند میزان چگالی‌پرشوندگی، جهت‌گیری‌چاپ‌، سرعت و دمای‌چاپ، فاصله الیاف و غیره می‌باشد. همچنین وجود شیار در قطعات مهندسی و به ویژه قطعات لایه‌لایه‌ای چاپ‌شده پلیمری می‌تواند تأثیر بسزایی در رفتار مکانیکی این مواد داشته‌باشد. در این تحقیق استحکام قطعات تیر کوتاه شیاردار با سه هندسه مختلف (U,V, keyhole) چاپ‌شده با ماده PLA تحت بارگذاری شبه‌استاتیکی خمشی به روش تجربی و آماری مورد بررسی قرار‌می‌گیرد. میزان بار و انرژی شکست نمونه‌ها محاسبه شده و همچنین حساسیت به هندسه‌شیار در قطعات آزموده‌شده ارزیابی‌می‌گردد. از آزمون فیشر برای مقایسه‌روجی شیار‌ها استفاده شده-است. نتایج این تحقیق نشان‌می‌دهد که شیار یک گوشه‌ی زاویه‌دار از همه ضعیف‌تر است در حالی که شیار دایره‌ای شکل مقاومت بیشتری دارد و این مقاومت با افزایش شعاع دایره افزایش‌می‌یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparison of flexural strength in rectangular shape 3D-printed PLA samples with different grooves

نویسندگان [English]

  • Ali Solouki 1
  • Mohammad reza Mohammad aliha 2
  • Ahmad Makui 3

1 School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

2 School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

3 School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

The production of parts using 3D printing, which is a type of additive manufacturing, is expanding at a faster rate. This technology can produce complex geometries by depositing melting polymer material layer by layer. Polylactic acid (PLA) is one of the most widely used materials in this technology due to its good properties such as biodegradability and bio-compatibility, and parts manufactured with PLA are being used in various engineering applications. The strength of these layer-by-layer parts depends on the printing parameters such as the infill density, the orientation of the printed fibers, the speed and temperature of the print, the distance between the fibers, etc. Also, the presence of grooves in engineering parts, especially printed polymer layer-by-layer parts, can significantly affect the mechanical behavior of these materials. In this research, the strength of short grooved beam parts with three different geometries (U, V, key hole) printed with PLA material under quasi-static bending loading is investigated experimentally and statistically. The amount of load and fracture energy of the samples are measured and also the sensitivity to the geometry of the groove in the tested parts is evaluated. Fisher's test is used for pairwise comparison of the grooves' strength. The results of this research show that the groove with an angled corner is the weakest, while the circular groove has a higher resistance, and this resistance increases when the radius of the circle is increased.

کلیدواژه‌ها [English]

  • 3D printing
  • Flexural strength
  • Additive manufacturing
  • Pairwise comparison
[1] Syrlybayev, D., Zharylkassyn, B., Seisekulova, A., Akhmetov, M., Perveen, A. and Talamona, D., “Optimisation of Strength Properties of Fdm Printed Parts—a Critical Review” Polymers, Vol. 13, No. 10, pp. 1587, 2021.
[2] Gordelier, T. J., Thies, P. R., Turner, L. and Johanning, L., “Optimising the Fdm Additive Manufacturing Process to Achieve Maximum Tensile Strength: A State-of-the-Art Review” Rapid Prototyping Journal, Vol. 25, No. 6, pp. 953-971, 2019.
[3] Gharehbaghi, H. and Farrokhabadi, A., “Experimental and Numerical Investigation of the Energy Absorption Capability of the Bi-Material Lattice Structure” Journal of Science and Technology of Composites, Vol. 9, No. 2, pp. 1976-1982, 2022.
[4] Dey, A. and Yodo, N., “A Systematic Survey of Fdm Process Parameter Optimization and Their Influence on Part Characteristics” Journal of Manufacturing and Materials Processing, Vol. 3, No. 3, pp. 64, 2019.
[5] Mohan, N., Senthil, P., Vinodh, S. and Jayanth, N., “A Review on Composite Materials and Process Parameters Optimisation for the Fused Deposition Modelling Process” Virtual and Physical Prototyping, Vol. 12, No. 1, pp. 47-59, 2017.
[6] Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y. and Yan, C., “A Critical Review of Fused Deposition Modeling 3d Printing Technology in Manufacturing Polylactic Acid Parts” The International Journal of Advanced Manufacturing Technology, Vol. 102, pp. 2877-2889, 2019.
[7] Kashfi, M., Pourrabia, P. and Kahhal, P., “A Correction Factor to Improve Poisson’s Ratio Prediction of 2d Auxetic Structure Using Finite Element Analysis and Experiment” Journal of Science and Technology of Composites, Vol. 8, No. 2, pp. 1556-1562, 2021.
[8] Heidari-Rarani, M., Sadeghi, P. and Ezati, N., “Effect of Processing Parameters on Tensile Properties of Fdm 3d Printed of Pla Specimens” Journal of Science and Technology of Composites, Vol. 7, No. 2, pp. 855-862, 2020.
[9] Triyono, J., Sukanto, H., Saputra, R. M. and Smaradhana, D. F., “The Effect of Nozzle Hole Diameter of 3d Printing on Porosity and Tensile Strength Parts Using Polylactic Acid Material” Open Engineering, Vol. 10, No. 1, pp. 762-768, 2020.
[10] Fang, L., Yan, Y., Agarwal, O., Yao, S., Seppala, J. E. and Kang, S. H., “Effects of Environmental Temperature and Humidity on the Geometry and Strength of Polycarbonate Specimens Prepared by Fused Filament Fabrication” Materials, Vol. 13, No. 19, pp. 4414, 2020.
[11] Huynh, L. P., Nguyen, H. A., Nguyen, H. Q., Phan, L. K. and Thanh, T. T., “Effect of Process Parameters on Mechanical Strength of Ffabricated Parts Using the Fused Deposition Modelling Method”, 2019.
[12] Abdelrhman, A. M., Gan, W. W. and Kurniawan, D., “Effect of Part Orientation on Dimensional Accuracy, Part Strength, and Surface Quality of Three Dimensional Printed Part” in Proceeding of IOP Publishing, pp. 012048.
[13] Chacón, J., Caminero, M. A., García-Plaza, E. and Núnez, P. J., “Additive Manufacturing of Pla Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection” Materials & Design, Vol. 124, pp. 143-157, 2017.
[14] Qattawi, A., Alrawi, B. and Guzman, A., “Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach” Procedia Manufacturing, Vol. 10, pp. 791-803, 2017.
[15] Liu, X., Zhang, M., Li, S., Si, L., Peng, J. and Hu, Y., “Mechanical Property Parametric Appraisal of Fused Deposition Modeling Parts Based on the Gray Taguchi Method” The International Journal of Advanced Manufacturing Technology, Vol. 89, pp. 2387-2397, 2017.
[16] Fernandes, J., Deus, A. M., Reis, L., Vaz, M. F. and Leite, M., “Study of the Influence of 3d Printing Parameters on the Mechanical Properties of Pla” in Proceeding of 14-17.
[17] Ameri, B., Taheri-Behrooz, F. and Aliha, M., “Fracture Loads Prediction of the Modified 3d-Printed Abs Specimens under Mixed-Mode I/Ii Loading” Engineering Fracture Mechanics, Vol. 235, pp. 107181, 2020.
[18] Ameri, B., Taheri-Behrooz, F. and Aliha, M., “Evaluation of the Geometrical Discontinuity Effect on Mixed-Mode I/Ii Fracture Load of Fdm 3d-Printed Parts” Theoretical and Applied Fracture Mechanics, Vol. 113, pp. 102953, 2021.
[19] Ameri, B., Taheri-Behrooz, F. and Aliha, M., “Mixed-Mode Tensile/Shear Fracture of the Additively Manufactured Components under Dynamic and Static Loads” Engineering Fracture Mechanics, Vol. 260, pp. 108185, 2022.
[20] Ameri, B., Taheri-Behrooz, F., Majidi, H. R. and Mohammad Aliha, M. R., “Mixed-Mode Load Bearing Estimation of the Cracked Additively Manufactured Materials Using Stress/Strain-Based Models” Rapid Prototyping Journal, Vol. 29, No. 2, pp. 218-231, 2023.
[21] Shahbazian, B. and Mirsayar, M., “Fracture Mechanics of Cellular Structures: Past, Present, and Future Directions” Engineering Solid Mechanics, Vol. 11, No. 2, pp. 231-242, 2023.
[22] Kafshgar, A. R., Rostami, S., Aliha, M. and Berto, F., “Optimization of Properties for 3d Printed Pla Material Using Taguchi, Anova and Multi-Objective Methodologies” Procedia Structural Integrity, Vol. 34, pp. 71-77, 2021.
[23] Rajpurohit, S., Dave, H. and Rajurkar, K., “Prediction of Tensile Strength of Fused Deposition Modeling (Fdm) Printed Pla Using Classic Laminate Theory” Engineering Solid Mechanics, Vol. 10, No. 1, pp. 13-24, 2022.
[24] Heidari-Rarani, M., Ezati, N., Sadeghi, P. and Badrossamay, M., “Optimization of Fdm Process Parameters for Tensile Properties of Polylactic Acid Specimens Using Taguchi Design of Experiment Method” Journal of Thermoplastic Composite Materials, Vol. 35, No. 12, pp. 2435-2452, 2022.
[25] Ansaripour, A., Heidari-Rarani, M. and Mahshid, R., “A Review on 4d Printing of Polymers and Polymer Composites” Journal of Science and Technology of Composites, No. Articles in Press, 2023.
[26] Sun, Q., Rizvi, G., Bellehumeur, C. and Gu, P., “Effect of Processing Conditions on the Bonding Quality of Fdm Polymer Filaments” Rapid prototyping journal, 2008.
[27] Sood, A. K., Ohdar, R. K. and Mahapatra, S. S., “Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts” Materials & Design, Vol. 31, No. 1, pp. 287-295, 2010.
[28] Montgomery, D. C., “Design and Analysis of Experiments”, John wiley & sons, 2017.