نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، مهندسی ساخت و تولید، دانشگاه آزاد اسلامی واحد شیراز، شیراز

2 دانشیار گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد شیراز، شیراز.

3 استادیار دانشگاه فنی و حرفه‌ای، دانشکده فنی و مهندسی باهنر شیراز، شیراز.

4 استادیار گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد شیراز، شیراز.

چکیده

از فرآیند اصطکاکی- اغتشاشی برای تولید ماده کامپوزیتی با زمینه فلزی برروی آلیاژ پایه آلومینیمی 5083 به منظور بهبود خواص سختی و تریبولوژیکی استفاده شد. از پودر تقویت کننده دی‌بوراید تیتانیم و نانو لوله کربنی استفاده گردید و تعداد پاس‌ها برای انجام فرآیند تغییر داده شد. ریزساختار مواد کامپوزیتی تولید شده با میکروسکوپ الکترونی روبشی و لایه‌های سطحی کامپوزیت توسط میکروسختی مورد بررسی قرار گرفتند. این روش در 4 پاس، باعث حداکثر 32.3 درصد افزایش سختی در نانو کامپوزیت سطحی حاصل از پودر نانو لوله کربنی و 21.6 درصد افزایش سختی در نانو کامپوزیت سطحی حاصل از پودر دی بورایدتیتانیم نسبت به فلز پایه گردید. نمونه‌های تولید شده با چهار پاس حاوی پودر نانو لوله کربنی، دارای سختی 8 درصد بیشتر از سختی نمونه‌هایی با پاس مشابه با پودر دی بورایدتیتانیم است. بیشترین مقاومت سایشی در 4 پاس حاصل گردید بطوریکه مقاومت سایشی حاصل شده در حالت استفاده از نانو لوله کربنی حدود 45 درصد بیش از حالت استفاده از پودر TiB2 بوده و عمر کاری قطعه در شرایط سایشی را می‌توان با این عملیات تا 3.5 برابر افزایش داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparison of Hardness and Tribological properties of Aluminum Alloy 5083 Nanocomposites using TiB2 Powder and Carbon Nanotube with Friction-Stir Process

نویسندگان [English]

  • Mostafa Gooli 1
  • Ahmad Afsari 2
  • Sayed Ahmad Behgozin 3
  • Sayed Mohammad Reza Nazemassadat 4

1 Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

2 Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

3 Department of Mechanical Engineering, Engineering College of Bahonar, Shiraz, Technical and vocational university, Iran.

4 Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

چکیده [English]

Friction stir process (FSP) was used to improve hardness and tribological properties of Al-5083 aluminum alloy through formation of metal matrix composite (MMC) material. The process involved the use of titanium diboride powder (TiB2) and carbon nanotubes reinforcing materials. The number of passes during the process was varied. Observations of the microstructure of the composite materials were made using scanning electron microscopy (SEM), while the composited surface layers were examined using microhardness testing. After conducting four passes using FSP, the surface nanocomposite obtained from carbon nanotubes and TiB2 yielded a maximum increase in hardness of 32.3%, and 21.6% compared to the base alloy respectively. Moreover, the samples produced with four passes, containing carbon nanotubes, showed a hardness 8% greater than the samples produced with the same number of passes, but with TiB2. Additionally, the highest wear resistance was also obtained using four passes. The wear resistance exhibited by the carbon nanotube-reinforced composite was approximately 45% greater than the TiB2 powder-reinforced composite. Hence, the use of FSP can potentially increase the working life of the part in wear conditions by up to 3.5 times.

کلیدواژه‌ها [English]

  • "Friction stir processing"
  • "AA5083 Aluminum Alloy"
  • "Surface Nanocomposite"
  • "Wear resistance"
  • "Hardness"
[1] Mishra, R. S., and Ma, Z. Y., “Friction stir welding and processing.” Materials science and engineering: R: reports, Vol. 50, No. 1-2, pp. 1-78, 2005.
[2] Węglowski, M. S., “Friction stir processing–State of the art,” Archives of civil and Mechanical Engineering, Vol. 18, No.1, pp. 114-129, 2018.
 [3] El-Sayed, M. M., Shash, A. Y., Abd-Rabou, M., & ElSherbiny, M. G., “Welding and processing of metallic materials by using friction stir technique: A review,” Journal of Advanced Joining Processes, No. 3, pp. 100059, 2021.
 [4] Khademi, A.R., and Afsari, A., “Fabrications of surface nanocomposite by friction stir processing to improve mechanical and microstructural properties of low carbon steel,” Transactions of the Indian Institute of Metals, Vol. 70, No.5, pp.1193-1198, 2017.
 [5] Rabiezadeh, A., & Afsari, A, “Effect of nanoparticles addition on dissimilar joining of aluminum alloys by friction stir welding,” In Persian, Journal of Welding Science and Technology of Iran, Vol.4, No.2, pp. 23-34, 2019.
 [6] Rabiezadeh, A., Afsari A., Bahmani A., and Sohrabizadeh S.,"Effects of friction stir processing on mechanical, tribological and corrosion resistance of low carbon steel." In Persian, Vol.48, No.3, pp.115-124, 2018.
 [7] Rabiezadeh, A., and A. Afsari. "Effect of Strengthening Particles on Microstructure and Tribological Properties of Aluminum Based Nano-composites." In Persian, Nanomaterials, Vol. 8, No.25, pp. 1-10, 2016.
[8] Rabiezadeh, A., Afsari, A., Mohammadi M., “Production and investigation of properties of aluminum surface nanocomposite /carbon nanotube (Al-CNT) produced by friction-stir process,” In Persian, Journal of New Materials, Vol.3, No.2, pp. 13-23, 2012. 
[9] Izadi, H. and Gerlich, A.P., “Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites”. Carbon, Vol. 50, No. 12, pp. 4744-4749. 2012.
 [10] Rajakumar, S., Balasubramanian V., “Establishing relationships between mechanical properties of aluminum alloys and optimized friction stir welding process parameters,” Materials and Design, No. 40, pp.17-35. 2012.
 [11] Zhang, Q., Xiao, B. L., Wang, Q. Z., & Ma, Z. Y., “In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system.” Materials Letters, Vol. 65, No.13, pp. 2070-2072, 2011.
[12] Teo, G. S., Liew, K. W., & Kok, C. K., “A Study on Friction Stir Processing Parameters of Recycled AA 6063/TiO2 Surface Composites for Better Tribological Performance.” Metals, Vol. 12, No.6, pp. 973, 2022.
 [13] Devaraju, A., Kumar A., Kotiveerachari B.,” Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid compositest via friction stir processing.” Materials and Design, No.45, pp. 576-585, 2013.
 [14] Rabiezadeh, A., and Afsari, A. "Production of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing." Journal of Modern Processes in Manufacturing and Production, Vol.5, No. 3, pp.  41-57, 2016:
 [15] Sadoun, A., Ibrahim, A., & Abdallah, A. W., “Fabrication and evaluation of tribological properties of Al2O3 coated Ag reinforced copper matrix nanocomposite by mechanical alloying.” Journal of Asian Ceramic Societies, Vol. 8, No.4, pp. 1228-1238, 2020.
 [16] Devaraju, A., Kumar A., Kumaraswamy A, Kotiveerachari B.,” Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing.” Materials and Design, Vol. 51, pp.331-341. 2013.
 [17] Yazdipour, A., and Dehghani, K., “Modeling the microstructural evolution and effect of cooling rate on the Nano-grains formed during the friction stir processing of Al5083.” Materials Science and Engineering: A, Vol. 527, No. 1-2, pp.192-197, 2009.
[18] Shadler, L. S., “Polymer based and polymer-filled nanocomposites’, Nanocomposites science and technology, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2004
[19] Pradeep, P. Samuel Ratna Kumar, P. S., Lawrence D., Jayabal S., “Characterization of particulate reinforced aluminum 7075/Tib2 composites”, Int. J.of civil Eng. And Technology, Vol. 8, No.9, pp178-190, 2017