نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشگاه آزاد اسالمی واحد علوم و تحقیقات، تهران.

2 استاد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران.

3 استادیار، مهندسی مکانیک، دانشگاه آزاد اسالمی واحد علوم و تحقیقات، تهران.

10.22068/jstc.2020.115498.1593

چکیده

کامپوزیت‌های زمینه پلیمری تقویت شده با الیاف، تحت بارهای دینامیکی مختلف نرخ‌های کرنش متفاوتی را تجربه خواهند کرد. از آنجا که رفتار مکانیکی این کامپوزیت‌ها، با تغییر نرخ کرنش تغییر می‌کند، پاسخ گذاری بسیاری از سازه‌های کامپوزیتی وابسته به نرخ کرنش خواهد بود. در تحقیق حاضر به دوره جامعی از مطالعات انجام شده بر روی الیاف شیشه و کامپوزیت‌های تقویت شده با این الیاف، به عنوان کاربردی‌ترین کامپوزیت زمینه پلیمری، تحت بارگذاری دینامیکی پرداخته شده است. از این رو در ابتدا مطالعات مختلف که در آنها خصوصیات مکانیکی الیاف طویل شیشه در نرخ‌های کرنش مختلف ارائه شده، به طور مبسوط بررسی شده است. در ادامه مطالعات تجربی که در آنها اثرات نرخ کرنش بر انواع کامپوزت-های زمینه پلیمری تقویت شده با الیاف شیشه ارائه شده، دسته بندی و ارائه گردیده است. همچنین رفتار پلیمرهای گرماسخت تحت نرخ‌های کرنش مختلف نیز مورد بررسی قرار گرفته‌است. در نهایت مدل‌های مختلف تحلیلی و عددی مکرومکانیکی و مایکرومکانیکی ارائه شده برای این نوع کامپوزیت‌ها بطور جامع مرور شدند.

کلیدواژه‌ها

عنوان مقاله [English]

A review on the effect of loading rate on the mechanical behavior of glass fiber and glass fiber/polymer composites

نویسندگان [English]

  • Alireza Khademi 1
  • Mahmood M. Shokrieh 2
  • Shahram Etemadi Haghighi 3

1 Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

3 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

The fiber-reinforced polymer (FRP) composites under different dynamic loads experienced various strain rates. Since mechanical behaviors of fiber-reinforced polymer composites vary with the strain rate, the transient response of most of the composite structures will be dependent on the strain rate. In the present research, a comprehensive review of the previously published studies on the topic of strain-rate dependent properties of glass fiber and its fiber-reinforced composites, as the most common FRP composite, under dynamic loading was presented. At first, studies that presented the mechanical properties of the long glass fibers at various strain rates were extensively investigated. Furthermore, experimental studies on the effects of strain rate on different types of glass fiber reinforced polymer composites were categorized and presented. Also, the strain-rate dependent behavior of the thermoset polymers was investigated. The various analytical and numerical models of macro-mechanics and micromechanics presented for this type of composites were reviewed comprehensively.

کلیدواژه‌ها [English]

  • Mechanical properties
  • Strain rate dependency
  • reinforcement fibers
  • glass/epoxy composites
[1]Silvestrov, V. and  Plastinin, A., “High-Strain-Rate Behavior of Several Types of Epoxy-Based Composites“ Le Journal de Physique IV, Vol. 7, No. C3, pp. C3-459-C3-464, 1997.
[2]Hsiao, H., Daniel, I. and  Cordes, R., “Strain Rate Effects on the Transverse Compressive and Shear Behavior of Unidirectional Composites“ Journal of Composite Materials, Vol. 33, No. 17, pp. 1620-1642, 1999.
[3]Hsiao, H. and  Daniel, I. M., “Strain Rate Behavior of Composite Materials“ Composites Part B: Engineering, Vol. 29, No. 5, pp. 521-533, 1998.
[4]Gama, B. A., Lopatnikov, S. L. and  Gillespie, J. W., “Hopkinson Bar Experimental Technique: A Critical Review“ Applied mechanics reviews, Vol. 57, No. 4, pp. 223-250, 2004.
[5]Hamouda, A. and  Hashmi, M., “Testing of Composite Materials at High Rates of Strain: Advances and Challenges“ Journal of Materials Processing Technology, Vol. 77, No. 1-3, pp. 327-336, 1998.
[6]Daniel, I., LaBedz, R. and  Liber, T., “New Method for Testing Composites at Very High Strain Rates“ Experimental Mechanics, Vol. 21, No. 2, pp. 71-77, 1981.
[7]Naresh, K., Shankar, K., Rao, B. and  Velmurugan, R., “Effect of High Strain Rate on Glass/Carbon/Hybrid Fiber Reinforced Epoxy Laminated Composites“ Composites Part B: Engineering, Vol. 100, pp. 125-135, 2016.
[8]Tsai, J. L. and  Kuo, J. C., “Investigating Strain Rate Effect on Transverse Compressive Strength of Fiber Composites“ in Proceeding of  Trans Tech Publ, pp. 733-738.
[9]Raju, K., Dandayudhapani, S. and  Thorbole, C., “Characterization of in-Plane Shear Properties of Laminated Composites at High Strain Rates“ Journal of Aircraft, Vol. 45, No. 2, pp. 493-497, 2008.
[10]Shokrieh, M. M., Omidi, M, J., , “A Review on Impact Resistance of Fiber Reinforced Polymer Composites“ Iranian Journal of Polymers Science and Technology, Vol. 24, No. 4, pp. 255-277, October-November 2011.
[11]Chandra Ray, B. and  Rathore, D., “A Review on Mechanical Behavior of Frp Composites at Different Loading Speeds“ Critical reviews in solid state and materials sciences, Vol. 40, No. 2, pp. 119-135, 2015.
[12]Cantwell, W. J. and  Morton, J., “The Impact Resistance of Composite Materials—a Review“ composites, Vol. 22, No. 5, pp. 347-362, 1991.
[13]Velayudham, A., Krishnamurthy, R. and  Soundarapandian, T., “Evaluation of Drilling Characteristics of High Volume Fraction Fibre Glass Reinforced Polymeric Composite“ International Journal of Machine Tools and Manufacture, Vol. 45, No. 4-5, pp. 399-406, 2005.
[14]Kalamkarov, A. L., “Composite and Reinforced Elements of Construction“,  Wiley New York, 1992.
[15]Kaw, A. K., “Mechanics of Composite Materials“,  CRC press, 2005.
[16] Agarwal, B. D., Broutman, L. J. and  Chandrashekhara, K., “Analysis and Performance of Fiber Composites“,  John Wiley & Sons, 2017.
[17] Taniguchi, N., Arao, Y., Nishiwaki, T., Hirayama, N., Nakamura, K. and  Kawada, H., “Experimental Study on Impact Tensile Property of Glass Fiber“ Advanced Composite Materials, Vol. 21, No. 2, pp. 165-175, 2012.
[18] Harding, J. and  Welsh, L. M., “A Tensile Testing Technique for Fibre-Reinforced Composites at Impact Rates of Strain“ Journal of Materials Science, Vol. 18, No. 6, pp. 1810-1826, 1983.
[19] Daniel, I., Hsiao, H. and  Cordes, R., “Dynamic Response of Carbon/Epoxy Composites“ American Society of Mechanical Engineers, Aerospace Division (Publication) AD, Vol. 48, pp. 167-177, 1995.
[20] Daniel, I., Hamilton, W. and  LaBedz, R., “Strain Rate Characterization of Unidirectional Graphite/Epoxy Composite“ in Proceeding of  ASTM International, pp.
[21] Daniels, H. E., “The Statistical Theory of the Strength of Bundles of Threads. I“ Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 183, No. 995, pp. 405-435, 1945.
[22] Coleman, B., “On the Strength of Classical Fibres and Fibre Bundles“ Journal of the Mechanics and Physics of Solids, Vol. 7, No. 1, pp. 60-70, 1958.
[23] Chi, Z., Chou, T.-W. and  Shen, G., “Determination of Single Fibre Strength Distribution from Fibre Bundle Testings“ Journal of materials science, Vol. 19, No. 10, pp. 3319-3324, 1984.
[24] Xia, Y., Yuan, J. and  YANG, B., “A Statistical Model and Experimental Study of the Strain-Rate Dependence of the Strength of Fibres“ Composites science and technology, Vol. 52, No. 4, pp. 499-504, 1994.
[25] Wang, Z. and  Xia, Y., “Experimental Evaluation of the Strength Distribution of Fibers under High Strain Rates by Bimodal Weibull Distribution“ Composites science and technology, Vol. 57, No. 12, pp. 1599-1607, 1998.
[26] Wang, Z., “Experimental Evaluation of the Strength Distribution of E-Glass Fibres at High Strain Rates“ Applied Composite Materials, Vol. 2, No. 4, pp. 257-264, 1995.
[27] Arao, Y., Taniguchi, N., Nishiwaki, T., Hirayama, N. and  Kawada, H., “Strain-Rate Dependence of the Tensile Strength of Glass Fibers“ Journal of Materials Science, Vol. 47, No. 12, pp. 4895-4903, 2012.
[28] Kim, T., Oshima, K. and  Kawada, H., “Impact Tensile Properties and Strength Development Mechanism of Glass for Reinforcement Fiber“ in Proceeding of  IOP Publishing, pp. 012006.
[29] Ou, Y., Zhu, D., Zhang, H., Huang, L., Yao, Y., Li, G. and  Mobasher, B., “Mechanical Characterization of the Tensile Properties of Glass Fiber and Its Reinforced Polymer (Gfrp) Composite under Varying Strain Rates and Temperatures“ Polymers, Vol. 8, No. 5, pp. 196, 2016.
[30] Khademi, A., Shokrieh, M. M., Etemadi Haghighi, S.,, “A Novel Model to Predict the Stiffness and Strength of Unidirectional Polymeric Composites at Different Strain Rates“ Journal of Materials Science, Vol. accepted manuscript, 2019.
[31] Figucia, F., Weiner, L. and  Laible, R., “The Mechanical Properties of Textile Materials as Influenced by Complexity and Rate of Testing“ Polymer Engineering & Science, Vol. 11, No. 4, pp. 289-294, 1971.
[32] Groves, S. E., Sanchez, R. J., Lyon, R. E. and  Brown, A. E., “High Strain Rate Effects for Composite Materials“  in: Eleventh Volume: Composite Materials—Testing and Design, Eds.: ASTM International, 1993.
[33] Taniguchi, N., Nishiwaki, T., Hirayama, N., Nishida, H. and  Kawada, H., “Evaluating the Impact Tensile Properties of Unidirectional fibre-Reinforced Composites with Thermoplastic Epoxy Resin“ Transactions of the Japan Society of Mechanical Engineers, Vol. 75, No. 9, pp. 1284–1289, 2009.
[31] Figucia, F., Weiner, L. and  Laible, R., “The Mechanical Properties of Textile Materials as Influenced by Complexity and Rate of Testing“ Polymer Engineering & Science, Vol. 11, No. 4, pp. 289-294, 1971.
[32] Groves, S. E., Sanchez, R. J., Lyon, R. E. and  Brown, A. E., “High Strain Rate Effects for Composite Materials“  in: Eleventh Volume: Composite Materials—Testing and Design, Eds.: ASTM International, 1993.
[33] Taniguchi, N., Nishiwaki, T., Hirayama, N., Nishida, H. and  Kawada, H., “Evaluating the Impact Tensile Properties of Unidirectional fibre-Reinforced Composites with Thermoplastic Epoxy Resin“ Transactions of the Japan Society of Mechanical Engineers, Vol. 75, No. 9, pp. 1284–1289, 2009.
[34] Kolsky, H., “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading“ Proceedings of the physical society. Section B, Vol. 62, No. 11, pp. 676, 1949.
[35] Li, Z. and  Lambros, J., “Strain Rate Effects on the Thermomechanical Behavior of Polymers“ International Journal of Solids and Structures, Vol. 38, No. 20, pp. 3549-3562, 2001.
[36] Chou, S., Robertson, K. and  Rainey, J., “The Effect of Strain Rate and Heat Developed During Deformation on the Stress-Strain Curve of Plastics“ Experimental mechanics, Vol. 13, No. 10, pp. 422-432, 1973.
[37] Roland, C., “Mechanical Behavior of Rubber at High Strain Rates“ Rubber Chemistry and Technology, Vol. 79, No. 3, pp. 429-459, 2006.
[38] Walley, S. and  Field, J., “Strain Rate Sensitivity of Polymers in Compression from Low to High Rates“ DYMAT j, Vol. 1, No. 3, pp. 211-227, 1994.
[39] Jordan, J. L., Siviour, C. and  Woodworth, B., “High Strain Rate Tensile and Compressive Effects in Glassy Polymers“ in Proceeding of  EDP Sciences, pp. 01001.
[40] Walley, S., Field, J. E., Pope, P. and  Safford, N., “A Study of the Rapid Deformation Behaviour of a Range of Polymers“ Phil. Trans. R. Soc. Lond. A, Vol. 328, No. 1597, pp. 1-33, 1989.
[41] Kendall, M. J. and  Siviour, C. R., “Rate Dependence of Poly (Vinyl Chloride), the Effects of Plasticizer and Time–Temperature Superposition“ Proc. R. Soc. A, Vol. 470, No. 2167, pp. 20140012, 2014.
[42] Rao, S., Shim, V. and  Quah, S., “Dynamic Mechanical Properties of Polyurethane Elastomers Using a Nonmetallic Hopkinson Bar“ Journal of Applied Polymer Science, Vol. 66, No. 4, pp. 619-631, 1997.
[43] Brown, E., Trujillo, C. and  Gray III, G., “Influence of Polyethylene Molecular Conformation on Taylor Impact Measurements: A Comparison of Hdpe, Uhmwpe, and Pex“ in Proceeding of  AIP, pp. 691-694.
[44] Shergold, O. A., Fleck, N. A. and  Radford, D., “The Uniaxial Stress Versus Strain Response of Pig Skin and Silicone Rubber at Low and High Strain Rates“ International Journal of Impact Engineering, Vol. 32, No. 9, pp. 1384-1402, 2006.
[45] Brown, E., Dattelbaum, D., Brown, D., Rae, P. and  Clausen, B., “A New Strain Path to Inducing Phase Transitions in Semi-Crystalline Polymers“ Polymer, Vol. 48, No. 9, pp. 2531-2536, 2007.
[46] Foster, M., Love, B., Kaste, R. and  Moy, P., “The Rate Dependent Tensile Response of Polycarbonate and Poly-Methylmethacrylate“ Journal of Dynamic Behavior of Materials, Vol. 1, No. 2, pp. 162-175, 2015.
[47] Kendall, M. and  Siviour, C., “Experimentally Simulating High-Rate Behaviour: Rate and Temperature Effects in Polycarbonate and Pmma“ Phil. Trans. R. Soc. A, Vol. 372, No. 2015, pp. 20130202, 2014.
[48] Gilat, A., Goldberg, R. K. and  Roberts, G. D., “Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading“ Journal of Aerospace Engineering, Vol. 20, No. 2, pp. 75-89, 2007.
[49] Gurusideswar, S., Srinivasan, N., Velmurugan, R. and  Gupta, N., “Tensile Response of Epoxy and Glass/Epoxy Composites at Low and Medium Strain Rate Regimes“ Procedia engineering, Vol. 173, pp. 686-693, 2017.
[50] Jordan, J. L., Foley, J. R. and  Siviour, C. R., “Mechanical Properties of Epon 826/Dea Epoxy“ Mechanics of Time-Dependent Materials, Vol. 12, No. 3, pp. 249-272, 2008.
[51] Littell, J. D., Ruggeri, C. R., Goldberg, R. K., Roberts, G. D., Arnold, W. A. and  Binienda, W. K., “Measurement of Epoxy Resin Tension, Compression, and Shear Stress–Strain Curves over a Wide Range of Strain Rates Using Small Test Specimens“ Journal of Aerospace Engineering, Vol. 21, No. 3, pp. 162-173, 2008.
[52] Mulliken, A. and  Boyce, M., “Mechanics of the Rate-Dependent Elastic–Plastic Deformation of Glassy Polymers from Low to High Strain Rates“ International journal of solids and structures, Vol. 43, No. 5, pp. 1331-1356, 2006.
[53] Tay, T., Ang, H. and  Shim, V., “An Empirical Strain Rate-Dependent Constitutive Relationship for Glass-Fibre Reinforced Epoxy and Pure Epoxy“ Composite Structures, Vol. 33, No. 4, pp. 201-210, 1995.
[54] Miwa, M., Takeimo, A., Yamazaki, H. and  Watanabe, A., “Strain Rate and Temperature Dependence of Shear Properties of Epoxy Resin“ Journal of materials science, Vol. 30, No. 7, pp. 1760-1765, 1995.
[55] Chen, W. and  Zhang, X., “Dynamic Response of Epon 828/T-403 under Multiaxial Loading at Various Temperatures“ Journal of engineering materials and technology, Vol. 119, No. 3, pp. 305-308, 1997.
[56] Chen, W. and  Zhou, B., “Constitutive Behavior of Epon 828/T-403 at Various Strain Rates“ Mechanics of time-dependent materials, Vol. 2, No. 2, pp. 103-111, 1998.
[57] Mayr, A. E., Cook, W. D. and  Edward, G. H., “Yielding Behaviour in Model Epoxy Thermosets—I. Effect of Strain Rate and Composition“ Polymer, Vol. 39, No. 16, pp. 3719-3724, 1998.
[58] Hou, J., Ruiz, C. and  Trojanowski, A., “Torsion Tests of Thermosetting Resins at Impact Strain Rate and under Quasi-Static Loading“ Materials Science and Engineering: A, Vol. 283, No. 1-2, pp. 181-188, 2000.
[59] Buckley, C., Dooling, P., Harding, J. and  Ruiz, C., “Deformation of Thermosetting Resins at Impact Rates of Strain. Part 2: Constitutive Model with Rejuvenation“ Journal of the Mechanics and Physics of Solids, Vol. 52, No. 10, pp. 2355-2377, 2004.
[60] Chen, W., Lu, F. and  Cheng, M., “Tension and Compression Tests of Two Polymers under Quasi-Static and Dynamic Loading“ Polymer testing, Vol. 21, No. 2, pp. 113-121, 2002.
[61] Goldberg, R. K. and  Gilat, A., “Experimental and Computational Characterization of the High Strain Rate Tensile Response of Polymer Matrix Composites“  in: Composite Materials: Testing and Design, Fourteenth Volume, Eds.: ASTM International, 2003.
[62] Naik, N., Shankar, P. J., Kavala, V. R., Ravikumar, G., Pothnis, J. R. and  Arya, H., “High Strain Rate Mechanical Behavior of Epoxy under Compressive Loading: Experimental and Modeling Studies“ Materials Science and Engineering: A, Vol. 528, No. 3, pp. 846-854, 2011.
[63] Shokrieh, M. M., Mosalmani, R. and  Omidi, M. J., “Strain Rate Dependent Micromechanical Modeling of Reinforced Polymers with Carbon Nanotubes“ Journal of Composite Materials, Vol. 48, No. 27, pp. 3381-3393, 2014.
[64] Naik, N. K., Pandya, K. S., Kavala, V. R., Zhang, W. and  Koratkar, N. A., “High-Strain Rate Compressive Behavior of Multi-Walled Carbon Nanotube Dispersed Thermoset Epoxy Resin“ Journal of Composite Materials, Vol. 49, No. 8, pp. 903-910, 2015.
[65] Lu, H., Tan, G. and  Chen, W., “Modeling of Constitutive Behavior for Epon 828/T-403 at High Strain Rates“ Mechanics of Time-Dependent Materials, Vol. 5, No. 2, pp. 119-129, 2001.
[66] Gerlach, R., Siviour, C. R., Petrinic, N. and  Wiegand, J., “Experimental Characterisation and Constitutive Modelling of Rtm-6 Resin under Impact Loading“ Polymer, Vol. 49, No. 11, pp. 2728-2737, 2008.
[67] Hasan, O. and  Boyce, M., “A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers“ Polymer Engineering & Science, Vol. 35, No. 4, pp. 331-344, 1995.
[68] Kendall, M. J. and  Siviour, C. R., “Experimentally Simulating Adiabatic Conditions: Approximating High Rate Polymer Behavior Using Low Rate Experiments with Temperature Profiles“ Polymer, Vol. 54, No. 18, pp. 5058-5063, 2013.
[69] Kendall, M. and  Siviour, C., “Strain Rate Dependence in Plasticized and Un-Plasticized Pvc“ in Proceeding of  EDP Sciences, pp. 02009.
[70] Kendall, M. J., Froud, R. F. and  Siviour, C. R., “Novel Temperature Measurement Method & Thermodynamic Investigations of Amorphous Polymers During High Rate Deformation“ Polymer, Vol. 55, No. 10, pp. 2514-2522, 2014.
[71] Richeton, J., Ahzi, S., Vecchio, K., Jiang, F. and  Adharapurapu, R., “Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress“ International journal of solids and structures, Vol. 43, No. 7-8, pp. 2318-2335, 2006.
[72] Cessna, L. and  Sternstein, S., “Viscoelasticity and Plasticity Considerations in the Fracture of Glasslike High Polymers“  in: Fracture of Metals, Polymers, and Glasses, Eds., pp. 45-79: Springer, 1967.
[73] Brazel, C. S. and  Rosen, S. L., “Fundamental Principles of Polymeric Materials“,  John Wiley & Sons, 2012.
[74] Foroutan, R., “High Strain Rate Behavior of Woven Composite Materials“  Thesis, Thesis for Doctor of Philosophy Degree, Department of Mechanical Engineering …, 2009.
[75] Plaseied, A. and  Fatemi, A., “Deformation Response and Constitutive Modeling of Vinyl Ester Polymer Including Strain Rate and Temperature Effects“ Journal of Materials Science, Vol. 43, No. 4, pp. 1191-1199, 2008.
[76] Amoedo, J. and  Lee, D., “Modeling the Uniaxial Rate and Temperature Dependent Behavior of Amorphous and Semicrystalline Polymers“ Polymer Engineering & Science, Vol. 32, No. 16, pp. 1055-1065, 1992.
[77] Ward, I. M. and  Sweeney, J., “Mechanical Properties of Solid Polymers“,  John Wiley & Sons, 2012.
[78] Qian, Z. and  Liu, S., “Unified Constitutive Modeling from Viscoelasticity to Viscoplasticity of Polymer Matrix Composites“ in Proceeding of  165-174.
[79] Boyce, M. C., Parks, D. M. and  Argon, A. S., “Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model“ Mechanics of Materials, Vol. 7, No. 1, pp. 15-33, 1988.
[80] Valisetty, R. and  Teply, J., “Overall Instantaneous Viscoplastic Properties of Composites“ Journal of composite materials, Vol. 26, No. 12, pp. 1708-1724, 1992.
[81] Zhang, C. and  Moore, I. D., “Nonlinear Mechanical Response of High Density Polyethylene. Part Ii: Uniaxial Constitutive Modeling“ Polymer Engineering & Science, Vol. 37, No. 2, pp. 414-420, 1997.
[82] Shen, X., Xia, Z. and  Ellyin, F., “Cyclic Deformation Behavior of an Epoxy Polymer. Part I: Experimental Investigation“ Polymer Engineering & Science, Vol. 44, No. 12, pp. 2240-2246, 2004.
[83] Bordonaro, C. M., “Rate Dependent Mechanical Behavior of High Strength Plastics: Experiment and Modeling“, 1996.
[84] Krempl, E., McMahon, J. and  Yao, D., “Viscoplasticity Based on Overstress with a Differential Growth Law for the Equilibrium Stress“ Mechanics of Materials, Vol. 5, No. 1, pp. 35-48, 1986.
[85] Goldberg, R. K., Roberts, G. D. and  Gilat, A., “Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects into the High Strain Rate Deformation Analysis of Polymer Matrix Composites“ Journal of Aerospace Engineering, Vol. 18, No. 1, pp. 18-27, 2005.
[86] Rotem, A. and  Lifshitz, J., “Longitudinal Strength of Unidirectional Fibrous Composite under High Rate of Loading“ in Proceeding of  1-10.
[87] Armenakas, A. and  Sciammarella, C., “Response of Glass-Fiber-Reinforced Epoxy Specimens to High Rates of Tensile Loading“ Experimental Mechanics, Vol. 13, No. 10, pp. 433-440, 1973.
[88] Lifshitz, J. M., “Impact Strength of Angle Ply Fiber Reinforced Materials“ Journal of Composite Materials, Vol. 10, No. 1, pp. 92-101, 1976.
[89] Daniel, I. and  Liber, T., “Strain Rate Effects on Mechanical Properties of Fiber Composites. Part 3“, ILLINOIS INST OF TECH CHICAGO,  pp. 1976.
[90] Hayes, S. V. and  Adams, D., “Rate Sensitive Tensile Impact Properties of Fully and Partially Loaded Unidirectional Composites“ Journal of Testing and Evaluation, Vol. 10, No. 2, pp. 61-68, 1982.
[91] Thiruppukuzhi, S. V. and  Sun, C., “Models for the Strain-Rate-Dependent Behavior of Polymer Composites“ Composites Science and Technology, Vol. 61, No. 1, pp. 1-12, 2001.
[92] Kawata, K., “Dynamic Behaviour Analysis of Composite Materials“ Composite Materials: Mechanics, Mechanical Properties and Fabrication, pp. 2-11, 1981.
[93] Kawata, K., “Mechanical Behaviour in High Velocity Tension of Composites“ progress in Science and Engineering of Composites, Vol. 1, pp. 829-836, 1982.
[94] Okoli, O. I. and  Smith, G., “Aspects of the Tensile Response of Random Continuous Glass/Epoxy Composites“ Journal of reinforced plastics and composites, Vol. 18, No. 7, pp. 606-613, 1999.
[95] Okoli, O. and  Smith, G., “The Effect of Strain Rate and Fibre Content on the Poisson’s Ratio of Glass/Epoxy Composites“ Composite Structures, Vol. 48, No. 1-3, pp. 157-161, 2000.
[96] Okoli, O. I. and  Smith, G., “High Strain Rate Characterization of a Glass/Epoxy Composite“ Journal of Composites, Technology and Research, Vol. 22, No. 1, pp. 3-11, 2000.
[97] Staab, G. H. and  Gilat, A., “High Strain Rate Response of Angle-Ply Glass/Epoxy Laminates“ Journal of Composite Materials, Vol. 29, No. 10, pp. 1308-1320, 1995.
[98] Naik, N. K., Yernamma, P., Thoram, N. M., Gadipatri, R. and  Kavala, V. R., “High Strain Rate Tensile Behavior of Woven Fabric E-Glass/Epoxy Composite“ Polymer Testing, Vol. 29, No. 1, pp. 14-22, 2010.
[99] Gowtham, H., Pothnis, J. R., Ravikumar, G. and  Naik, N., “High Strain Rate in-Plane Shear Behavior of Composites“ Polymer Testing, Vol. 32, No. 8, pp. 1334-1341, 2013.
[100]       Naik, N. and  Kavala, V. R., “High Strain Rate Behavior of Woven Fabric Composites under Compressive Loading“ Materials Science and Engineering: A, Vol. 474, No. 1-2, pp. 301-311, 2008.
[101]       Choe, G., Finch Jr, W. and  Vinson, J., “Compression Testing of Composite Materials at High Strain Rates“ in Proceeding of  82-91.
[102]Kumar, P., Garg, A. and  Agarwal, B., “Dynamic Compressive Behaviour of Unidirectional Gfrp for Various Fibre Orientations“ Materials Letters, Vol. 4, No. 2, pp. 111-116, 1986.
[103]El-Habak, A., “Mechanical Behaviour of Woven Glass Fibre-Reinforced Composites under Impact Compression Load“ Composites, Vol. 22, No. 2, pp. 129-134, 1991.
[104]Vural, M. and  Ravichandran, G., “Transverse Failure in Thick S2-Glass/Epoxy Fiber-Reinforced Composites“ Journal of Composite Materials, Vol. 38, No. 7, pp. 609-623, 2004.
[105]Tarfaoui, M., Choukri, S. and  Nême, A., “Effect of Fibre Orientation on Mechanical Properties of the Laminated Polymer Composites Subjected to out-of-Plane High Strain Rate Compressive Loadings“ Composites Science and Technology, Vol. 68, No. 2, pp. 477-485, 2008.
[106]Ochola, R., Marcus, K., Nurick, G. and  Franz, T., “Mechanical Behaviour of Glass and Carbon Fibre Reinforced Composites at Varying Strain Rates“ Composite Structures, Vol. 63, No. 3-4, pp. 455-467, 2004.
[107]Zainuddin, S., Hosur, M., Barua, R., Kumar, A. and  Jeelani, S., “Effects of Ultraviolet Radiation and Condensation on Static and Dynamic Compression Behavior of Neat and Nanoclay Infused Epoxy/Glass Composites“ Journal of Composite Materials, Vol. 45, No. 18, pp. 1901-1918, 2011.
[108]Harding, J. and  Li, Y., “Determination of Interlaminar Shear Strength for Glass/Epoxy and Carbon/Epoxy Laminates at Impact Rates of Strain“ Composites Science and Technology, Vol. 45, No. 2, pp. 161-171, 1992.
[109]Tsai, J.-L. and  Sun, C., “Strain Rate Effect on in-Plane Shear Strength of Unidirectional Polymeric Composites“ Composites Science and Technology, Vol. 65, No. 13, pp. 1941-1947, 2005.
[110]Shokrieh, M. M. and  Omidi, M. J., “Investigating the Transverse Behavior of Glass–Epoxy Composites under Intermediate Strain Rates“ Composite Structures, Vol. 93, No. 2, pp. 690-696, 2011.
[111]Shokrieh, M. M. and  Omidi, M. J., “Compressive Response of Glass–Fiber Reinforced Polymeric Composites to Increasing Compressive Strain Rates“ Composite structures, Vol. 89, No. 4, pp. 517-523, 2009.
[112]Shokrieh, M. M. and  Omidi, M. J., “Tension Behavior of Unidirectional Glass/Epoxy Composites under Different Strain Rates“ Composite Structures, Vol. 88, No. 4, pp. 595-601, 2009.
[113]Shokrieh, M. M. and  Omidi, M. J., “Investigation of Strain Rate Effects on in-Plane Shear Properties of Glass/Epoxy Composites“ Composite Structures, Vol. 91, No. 1, pp. 95-102, 2009.
[114]Gurusideswar, S. and  Velmurugan, R., “High Strain Rate Sensitivity of Glass/Epoxy/Clay Nanocomposites“ in Proceeding of.
[115]Parry, T. and  Harding, J., “The Failure of Glass-Reinforced Composites under Dynamic Torsional Loading“, OXFORD UNIV (UNITED KINGDOM) DEPT OF ENGINEERING SCIENCE,  pp. 1981.
[116]Tarfaoui, M., Nême, A. and  Choukri, S., “Damage Kinetics of Glass/Epoxy Composite Materials under Dynamic Compression“ Journal of composite materials, Vol. 43, No. 10, pp. 1137-1154, 2009.
[117]Mahato, K. K., Biswal, M., Rathore, D. K., Prusty, R. K., Dutta, K. and  Ray, B. C., “Effect of Loading Rate on Tensile Properties and Failure Behavior of Glass Fibre/Epoxy Composite“ in Proceeding of  IOP Publishing, pp. 012017.
[118]Acharya, S., Mondal, D., Ghosh, K. and  Mukhopadhyay, A. K., “Mechanical Behaviour of Glass Fibre Reinforced Composite at Varying Strain Rates“ Materials Research Express, Vol. 4, No. 3, pp. 035303, 2017.
[119]Reis, J., Coelho, J., Monteiro, A. and  da Costa Mattos, H., “Tensile Behavior of Glass/Epoxy Laminates at Varying Strain Rates and Temperatures“ Composites Part B: Engineering, Vol. 43, No. 4, pp. 2041-2046, 2012.
[120]Coelho, J. and  Reis, J., “Effects of Strain Rate and Temperature on the Mechanical Properties of Gfrp Composites“ Revista de Engenharia Térmica, Vol. 10, No. 1-2, pp. 03-06, 2018.
[121]Naresh, K., Shankar, K., Velmurugan, R. and  Gupta, N., “Statistical Analysis of the Tensile Strength of Gfrp, Cfrp and Hybrid Composites“ Thin-Walled Structures, Vol. 126, pp. 150-161, 2018.
[122]Mahato, K. K., Biswal, M., Rathore, D. K., Prusty, R. K., Dutta, K. and  Ray, B. C., “Effect of Loading Rate on Tensile Properties and Failure Behavior of Glass Fibre/Epoxy Composite“ in Proceeding of  IOP Publishing, pp. 012017.
[123]Naresh, K., Shankar, K. and  Velmurugan, R., “Reliability Analysis of Tensile Strengths Using Weibull Distribution in Glass/Epoxy and Carbon/Epoxy Composites“ Composites Part B: Engineering, Vol. 133, pp. 129-144, 2018.
[124]Heimbs, S., Wagner, T., Viana Lozoya, J. T., Hoenisch, B. and  Franke, F., “Comparison of Impact Behaviour of Glass, Carbon and Dyneema Composites“ Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 233, No. 3, pp. 951-966, 2019.
[125]Elmahdy, A. and  Verleysen, P., “Mechanical Behavior of Basalt and Glass Textile Composites at High Strain Rates: A Comparison“ Polymer Testing, Vol. 81, pp. 106224, 2020.
[126]Davies, R. and  Magee, C., “The Effect of Strain-Rate Upon the Tensile Deformation of Materials“ Journal of Engineering Materials and Technology, Vol. 97, No. 2, pp. 151-155, 1975.
[127]AMIJIMA, S. and  FUJII, T., “Compressive Strength and Fracture Characteristics of Fiber Composites under Impact Loading“ Advances in composite materials, pp. 399-413, 1980.
[128]Welsh, L. and  Harding, J., “Effect of Strain Rate on the Tensile Failure of Woven Reinforced Polyester Resin Composites“ Le Journal de Physique Colloques, Vol. 46, No. C5, pp. C5-405-C5-414, 1985.
[129]Barre, S., Chotard, T. and  Benzeggagh, M., “Comparative Study of Strain Rate Effects on Mechanical Properties of Glass Fibre-Reinforced Thermoset Matrix Composite“ Composites Part A: Applied Science and Manufacturing, Vol. 27, No. 12, pp. 1169-1181, 1996.
[130]Pardo, S., Baptiste, D., Décobert, F., Fitoussi, J. and  Joannic, R., “Tensile Dynamic Behaviour of a Quasi-Unidirectonal E-Glass/Polyester Composite“ Composites Science and Technology, Vol. 62, No. 4, pp. 579-584, 2002.
[131]Khan, M. S., Simpson, G. and  Gellert, E., “Resistance of Glass-Fibre Reinforced Polymer Composites to Increasing Compressive Strain Rates and Loading Rates“ Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 1, pp. 57-67, 2000.
[132]Arbaoui, J., Tarfaoui, M. and  Alaoui, A. E. M., “Mechanical Behavior and Damage Kinetics of Woven E-Glass/Vinylester Laminate Composites under High Strain Rate Dynamic Compressive Loading: Experimental and Numerical Investigation“ International Journal of Impact Engineering, Vol. 87, pp. 44-54, 2016.
[133]Hufner, D. R. and  Hill, S. I., “High Strain Rate Testing and Modeling of a Woven E-Glass–Vinylester Composite in Dry and Saturated Conditions“ Journal of Composite Materials, Vol. 51, No. 21, pp. 3017-3039, 2017.
[134]Papadakis, N., Reynolds, N., Pharaoh, M., Wood, P. and  Smith, G., “Strain Rate Effects on the Shear Mechanical Properties of a Highly Oriented Thermoplastic Composite Material Using a Contacting Displacement Measurement Methodology–Part A: Elasticity and Shear Strength“ Composites Science and Technology, Vol. 64, No. 5, pp. 729-738, 2004.
[135]Govender, R., Langdon, G., Cloete, T. and  Nurick, G., “High Strain Rate Compression Testing of Glass Fibre Reinforced Polypropylene“ in Proceeding of  EDP Sciences, pp. 01039.
[136]Kander, R. and  Siegmann, A., “The Effect of Strain Rate on Damage Mechanisms in a Glass/Polypropylene Composite“ Journal of composite materials, Vol. 26, No. 10, pp. 1455-1473, 1992.
[137]Santa, J. F., Vanegas-Jaramillo, J. D. and  Patiño, I., “Mechanical Characterization of Composites Manufactured by Rtm Process: Effect of Fiber Content, Strain Rate and Orientation“ Latin American Journal of Solids and Structures, Vol. 13, No. 2, pp. 344-364, 2016.
[138]Spronk, S., Gilabert Villegas, F. A., Sevenois, R., Garoz Gómez, D. and  Van Paepegem, W., “Tensile Rate-Dependency of Carbon/Epoxy and Glass/Polyamide-6 Composites“ in Proceeding of.
[139]Mars, J., Chebbi, E., Wali, M. and  Dammak, F., “Numerical and Experimental Investigations of Low Velocity Impact on Glass Fiber-Reinforced Polyamide“ Composites Part B: Engineering, Vol. 146, pp. 116-123, 2018.
[140]Duan, S., Yang, X., Tao, Y., Mo, F., Xiao, Z. and  Wei, K., “Experimental and Numerical Investigation of Long Glass Fiber Reinforced Polypropylene Composite and Application in Automobile Components“ Transport, Vol. 33, No. 5, pp. 1135-1143, 2018.
[141]Sassi, S., Tarfaoui, M. and  Yahia, H. B., “An Investigation of in-Plane Dynamic Behavior of Adhesively-Bonded Composite Joints under Dynamic Compression at High Strain Rate“ Composite Structures, Vol. 191, pp. 168-179, 2018.
[142]Kinvi-Dossou, G., Boumbimba, R. M., Bonfoh, N., Koutsawa, Y., Eccli, D. and  Gerard, P., “A Numerical Homogenization of E-Glass/Acrylic Woven Composite Laminates: Application to Low Velocity Impact“ Composite Structures, Vol. 200, pp. 540-554, 2018.
[143]Kim, D.-H., Kang, S.-Y., Kim, H.-J. and  Kim, H.-S., “Strain Rate Dependent Mechanical Behavior of Glass Fiber Reinforced Polypropylene Composites and Its Effect on the Performance of Automotive Bumper Beam Structure“ Composites Part B: Engineering, Vol. 166, pp. 483-496, 2019.
[144]Massaq, A., Rusinek, A., Klosak, M., Bahi, S. and  Arias, A., “Strain Rate Effect on the Mechanical Behavior of Polyamide Composites under Compression Loading“ Composite Structures, Vol. 214, pp. 114-122, 2019.
[145]Cui, J., Wang, S., Wang, S., Li, G., Wang, P. and  Liang, C., “The Effects of Strain Rates on Mechanical Properties and Failure Behavior of Long Glass Fiber Reinforced Thermoplastic Composites“ Polymers, Vol. 11, No. 12, 2019.
[146]Yoon, K. and  Sun, C., “Characterization of Elastic-Viscoplastic Properties of an As4/Peek Thermoplastic Composite“ Journal of Composite Materials, Vol. 25, No. 10, pp. 1277-1296, 1991.
[147]Weeks, C. and  Sun, C., “Modeling Non-Linear Rate-Dependent Behavior in Fiber-Reinforced Composites“ Composites Science and Technology, Vol. 58, No. 3-4, pp. 603-611, 1998.
[148]Gates, T. S. and  Sun, C., “Elastic/Viscoplastic Constitutive Model for Fiber Reinforced Thermoplastic Composites“ AIAA journal, Vol. 29, No. 3, pp. 457-463, 1991.
[149]Sun, C. and  Chen, J., “A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composites“ Journal of Composite Materials, Vol. 23, No. 10, pp. 1009-1020, 1989.
[150]Guedes, R., Vaz, M., Ferreira, F. and  Morais, J., “Response of Cfrp Laminates under High Strain Rate Compression until Failure“ Science and Engineering of Composite Materials, Vol. 12, No. 1-2, pp. 145-152, 2005.
[151]Tsai, J. L. and  Wang, H., “Modeling Nonlinear Rate Dependent Behaviors of Composite Laminates“ Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 141-148, 2007.
[152]Hashin, Z., “Failure Criteria for Unidirectional Fiber Composites“ Journal of applied mechanics, Vol. 47, No. 2, pp. 329-334, 1980.
[153]Jamal Omidi, M., “Dynamic Crash of Composite Structures under Intermediate Strain Rate“ Ph.D. Thesis, Mechanical engineering, Iran university of Science and Technology, 2009.
[154]Bisagni, C., Di Pietro, G., Fraschini, L. and  Terletti, D., “Progressive Crushing of Fiber-Reinforced Composite Structural Components of a Formula One Racing Car“ Composite structures, Vol. 68, No. 4, pp. 491-503, 2005.
[155]Donadon, M., Iannucci, L., Falzon, B. G., Hodgkinson, J. and  de Almeida, S. F., “A Progressive Failure Model for Composite Laminates Subjected to Low Velocity Impact Damage“ Computers & Structures, Vol. 86, No. 11-12, pp. 1232-1252, 2008.
[156]Shokrieh, M. M. and  Omidi, M. J., “Dynamic Progressive Damage Modeling of Fiber-Reinforced Composites under Different Strain Rates“ Journal of Composite Materials, Vol. 44, No. 23, pp. 2723-2745, 2010.
[157]Chen, J.-F. and  Morozov, E. V., “A Consistency Elasto-Viscoplastic Damage Model for Progressive Failure Analysis of Composite Laminates Subjected to Various Strain Rate Loadings“ Composite Structures, Vol. 148, pp. 224-235, 2016.
[158]Shokrieh, M. M., and Karamnejad, A.,, “Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method“ International Journal of Mechanical, Industrial and Aerospace Engineering, Vol. 4, No. 1, pp. 50- 56, 2010.
[159]Shokrieh, M. and  Karamnejad, A., “Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method“ Int Scholarly Sci Res Innovation, Vol. 5, No. 2, pp. 63-69, 2011.
[160]Wan, Y., Sun, B. and  Gu, B., “Multi-Scale Structure Modeling of Damage Behaviors of 3d Orthogonal Woven Composite Materials Subject to Quasi-Static and High Strain Rate Compressions“ Mechanics of Materials, Vol. 94, pp. 1-25, 2016.
[161]Tabiei, A. and  Aminjikarai, S. B., “A Strain-Rate Dependent Micro-Mechanical Model with Progressive Post-Failure Behavior for Predicting Impact Response of Unidirectional Composite Laminates“ Composite Structures, Vol. 88, No. 1, pp. 65-82, 2009.
[162]Tabiei, A. and  Ivanov, I., “Micro-Mechanical Model with Strain-Rate Dependency and Damage for Impact Simulation of Woven Fabric Composites“ Mechanics of Advanced Materials and Structures, Vol. 14, No. 5, pp. 365-377, 2007.
[163]Tabiei, A., Yi, W. and  Goldberg, R., “Non-Linear Strain Rate Dependent Micro-Mechanical Composite Material Model for Finite Element Impact and Crashworthiness Simulation“ International Journal of Non-linear Mechanics, Vol. 40, No. 7, pp. 957-970, 2005.
[164]Clements, B., Johnson, J. and  Hixson, R., “Stress Waves in Composite Materials“ Physical Review E, Vol. 54, No. 6, pp. 6876, 1996.
[165]Aidun, J. B. and  Addessio, F., “An Enhanced Cell Model with Nonlinear Elasticity“ Journal of composite materials, Vol. 30, No. 2, pp. 248-280, 1996.
[166]Goldberg, R. K. and  Stouffer, D. C., “High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations“, 1998.
[167]Shokrieh, M. M., Mosalmani, R. and  Omidi, M. J., “Strain-Rate Dependent Micromechanical Method to Investigate the Strength Properties of Glass/Epoxy Composites“ Composite Structures, Vol. 111, pp. 232-239, 2014.
[168]Shokrieh, M. M., Mosalmani, R. and  Omidi, M. J., “A Strain-Rate Dependent Micromechanical Constitutive Model for Glass/Epoxy Composites