نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، مهندسی مکانیک ، دانشگاه تبریز ، تبریز

2 دانشیار ، مهندسی مکانیک ، دانشگاه تبریز ، تبریز

3 استاد ، مهندسی مکانیک ، دانشگاه تبریز ، تبریز

4 استاد ، مهندسی مکانیک ، دانشگاه امیرکبیر ، تهرا ن

10.22068/jstc.2020.115583.1594

چکیده

در سالهای اخیر، پژوهش‌های متعددی در زمینه خودترمیمی با استفاده از شبکه‌ آوندی در کامپوزیت‌ها انجام شده است. با توجه به اینکه وجود شبکه آوندی در کامپوزیت‌ها منجر به افت خواص مکانیکی اولیه می‌شود، تعیین طرح بهینه شبکه آوندی برای دستیابی به حداقل افت خواص، اهمیت بسزایی دارد. در این پژوهش، به مطالعه تجربی و عددی اثر وجود و جهت‌گیری آوندهای شیشه‌ای توخالی بر رفتار کششی در کامپوزیت‌ اپوکسی- الیاف شیشه پرداخته شده است. جهت‌گیری آوند‌های شیشه در سه سطح 0، 45 و 90 درجه نسبت به راستای الیاف شیشه تقویت‌کننده، و فاصله آوندها از یکدیگر 200 میکرومتر در نظر گرفته شد. نتایج آزمون‌های تجربی نشان داد که وجود آوندهای شیشه‌ای در کامپوزیت باعث افت خواص کششی می‌شود و کمترین کاهش خواص کششی در نمونه کامپوزیتی حاوی آوندهای شیشه‌ای در راستای 45 درجه است. وجود و شکست آوندهای شیشه‌ای در نمونه‌های کامپوزیتی با استفاده از میکروسکوپ الکترونی روبشی مطالعه شد. در مرحله بعد، شبیه‌سازی المان محدود سه‌بعدی با استفاده از المان حجمی نماینده، برای نمونه‌های حاوی سیستم آوندی توخالی با جهت‌گیری‌های مختلف با استفاده از نرم‌افزار ABAQUS انجام شد. برای شبیه‌سازی فصل مشترک آوند شیشه‌ای-رزین اپوکسی، از ترکیب همزمان مدل‌های ناحیه چسبان و اصطکاکی کولمب استفاده شد. نتایج شبیه‌سازی نشان دهنده اختلاف جزیی در مقادیر استحکام کششی پیش‌بینی شده با مقادیر تجربی است. در مرحله بعد، عملکرد خودترمیم در کامپوزیت حاوی آوندهای شیشه پرشده با مواد خودترمیم با جهت‌گیری 45 بطور تجربی بررسی شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental and Numerical Studies on the Effect of Hollow Glass Fiber Presence and Orientation on the Tensile Behavior of Epoxy/Glass Fiber Composite

نویسندگان [English]

  • Alireza Adli 1
  • Karim Shelesh-Nezhad 2
  • Mohammad Reza Khoshravan Azar 3
  • Mohammad Mohammadi-Aghdam 4

1 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

3 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

4 Faculty of Mechanical Engineering, Amirkabir University, Tehran, Iran.

چکیده [English]

In recent years, numerous investigations have been conducted on self-healing process using vascular network in composites. Since the vascular network in the composites leads to a decrease in virgin tensile properties, it is important to determine the optimal design of the vascular network in order to achieve minimum tensile properties loss. In this research, experimental and numerical studies on the effect of hollow glass fiber (HGF) presence and orientation on tensile behavior in epoxy/glass fiber composite are carried out. The orientations of HGFs were selected at three levels of 0, 45 and 90°, and the distance of HGFs was kept at 200 μm. The experimental results indicated that the presence of blank HGFs in composite lowered the tensile strength. The lowest decrease in tensile strength was observed in the composite containing HGF at angle of 45°. The presence and failure of HGFs in composite specimens were studied using scanning electron microscopy. Next, three-dimensional simulations of composite containing vascular HGF were performed using ABAQUS software and representative volume element (RVE). To simulate the interface of HGFs and epoxy matrix, a combination of cohesive zone and Columb’s friction models was used. A good agreement between FEM and experimental results for tensile strength of different specimens was observed. Next, the healing performance for composite containing self-healing HGFs at angle of 45° was investigated.

کلیدواژه‌ها [English]

  • "Epoxy-glass composite"
  • "Hollow glass fiber"
  • "Tensile behavior"
  • "Simulation"
[1]Zeng, C. Seino, H. Ren, J. Hatanaka, K. and Yoshie, N., “Self-healing Biobased Furan Polymers Cross-linked with Various Bis-maleimides” , Polymer, Vol. 54, pp. 5351-5357, 2013.
[2]Trask, R.S. Williams, H.R and Bond, I.P., “Self-Healing Polymer Composites: Mimicking Nature to Enhance Performance”, Bioinspiration & Biomimetics, Vol. 2, pp. 1-9, 2007.
[3]Wang, Y. Pham, T.D. and Ji, C., “Self-healing composites: A review”, Cogent Engineering, Vol. 2, pp. 107-121, 2015.
[4]Kanua, N.J. Gupta, E. Vates, U.K. and Singh, G.K., “Self-healing composites: A state-of-the-art review”, Composites Part A, Vol 121, pp. 474–486, 2019.
[5]Dry, C., “Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibers into Cement Matrices”, Smart Materials and Structures, Vol. 3, pp. 118-123, 1994.
[6]Dry, C., “Procedures Developed for Self-Repair of Polymeric Matrix Composite Materials”, Composite Structures, Vol. 35, pp. 263–269, 1996.
[7]White, S.R. Sottos, N.R. Geubelle, P.H. Moore, J.S. Kessler, M.R. Sriram, S.R. Brown, E.N. and Viswanathan, S., “Autonomic Healing of Polymer Composites, Nature”, Vol. 409, pp. 794–797, 2001.
[8]Brown, E.N. Sottos, N.R. and White, S.R., “Fracture Testing of a Self-Healing Polymer Composite”, Experimental Mechanics, Vol. 42, pp. 372-379, 2002.
[9]Jericho, L.M. Scott, R. White, S.R. and Sottos, N.R., “A Self-Sealing Fiber-Reinforced Composite”, Journal of Composite Materials,Vol. 44, pp. 1-13, 2010.
[10]Kessler, M. R. Sottos, N. R. and White, S. R., “Self-Healing Structural Composite Materials”, Composites Part A, Vol. 34A, pp. 743–753, 2003.
[11]Hayes, S.A. Jones, F.R. Marshiya, K. and Zhang, W., “A self-healing thermosetting composite material”, Composites Part A, Vol. 38, pp. 1116–1120, 2007.
[12]Belay, S.M. Leader.C.B. Hawyes V.J. Humberstone.L. and Curits P.T., “A Smart Repair System for Polymer Matrix Composite”, Composite Part A, Vol. 32, pp. 1767-1776, 2001.
[13]Pang, J. W. C. and Bond, I. P., “Bleeding Composites-Damage Detection and Self-Repair Using a Biomimetic Approach”, Composites Part A, Vol. 36A, pp. 183–188, 2005.
[14]Pang, J. W. C. and Bond, I. P., “A Hollow Fibre Reinforced Polymer Composite Encompassing Self-Healing and Enhanced Damage Visibility”, Composites Science and Technology, Vol. 65, pp. 1791– 1799, 2005.
[15]Trask R. S. and Bond I. P., “Biomimetic Self-Healing of Advanced Composite Structures Using Hollow Glass Fibres”, Smart Materials and Structures, Vol. 15, pp. 704-710. 2006.
[16]Williams, G. Trask, R. and Bond, I., “A Self-healing Carbon Fiber Reinforced Polymer for Aerospace Applications”, Composites Part A, Vol. 38, pp. 1525-1532, 2007.
[17]Zainuddin, S. Arefin, T. Fahim, A. Hosur, M. V. Tyson, J. D. Kumar, A. Trovillion, J. and Jeelani, S., “Recovery and Improvement in Low-Velocity Impact Properties of E-Glass/Epoxy Composites Through Novel Self-Healing Technique”, Composite Structures, Vol. 108, pp. 277-286, 2014.
[18]Eslami-Farsani, R. Sari, A. and Khosravi, H., “Mechanical properties of carbon fibers/epoxy composite containing anhydride self-healing material under transverse loading”, In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 285-290, 2016.
[19]Abbasnia, Sh. Eslami-Farsani, R. and Khosravi, H. “Mechanical performance of self-healing fiber-metal laminates under transverse loading”, In Persian, Journal of Science and Technology of Composites, Vol. 05, No. 02, pp. 185-190, 2018.
[20]Eslami-Farsani, R. Mohabbati, F. and Khosravi, H., “Experimental study of tensile behavior of self-healing fiber-metal laminates composites with chopped hollow glass fibers”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 399-404, 2018.
[21]Mohammadi, M. A. Babolhavaeji, M. Eslami-Farsani, R. and Zamani, M. R., “Effect of time on healing behavior of microvascular channels based self-healing E-glass fibers/epoxy composite under flexural and tensile loadings condition”, In Persian, Journal of Science and Technology of Composites, In-Press.
[22]Eslami-Farsani, R. Khalili, S. M. R.  Khademoltoliati, A. and Saeedi, A., “Tensile and creep behavior of microvascular based self-healing composites: Experimental study”, Mechanics of Advanced Materials and Structures, 2019, DOI: 10.1080/15376494.1567882. In-Press.
[23]Saini, S. and Jain, D. “The Effect of Healing Time on the Self-Healing Efficiency of Carbon Fiber Reinforced Polymer Composites”, Materials Today: Proceedings, Vol. 4, pp. 2903–2909, 2017.
[24]Khalili, S. M. R. Zarei, M. and Eslami-Farsani, R., “Experimental study of the mechanical behavior of self-healing polymer composite under heating cycles”, In Persian, Journal of Science and Technology of Composites, In-Press.
[25]Adli, A. Shelesh-Nezhad, K. Khoshravan-Azar, M.R. Mohammadi-Aghdam, M., “The Effect of Vascular Self-Healing Orientation on Healing Efficiency of Epoxy/Glass Fiber Composite”, In Persian, Journal of Science and Technology of Composites, In-Press.
[26]Huang, C. Y. Trask, R. Bond, I., “Characterization and analysis of carbon fiber-reinforced polymer composite laminates with embedded circular vasculature”, Journal of The Royal Society Interface, Vol.7, pp. 1229-1241, 2010.
[27]Zhou, F. Wang, C. Mouritz, A., “Computational analysis of the structural integrity of self-healing composites”, Materials Science Forum, Vol. 654, 2567-2578, 2010.
[28]Darren, J.H. Geoffrey, J. Jeffrey, W.B., “Effects of microchannels on the mechanical performance of multifunctional composite laminates with unidirectional laminae”, Composite Structures, pp.1-35, 2016.
[29]Ping, K. Wang, C. Varley, R., Mouritz, A., “Mechanical properties of mendable composites containing self-healing thermoplastic agents”, Composites Part A: Applied Science and Manufacturing, Vol. 65, pp.10-18, 2014.
[30]Nguyen, A. T. Orifici, A. C., “Structural assessment of microvascular self- healing laminates using progressive damage nite element analysis”, Composites Part A: Applied Science and Manufacturing, Vol 43, 1886-1894, 2012.
[31]Kaw, K., Mechanics of composite materials, CRC Press Taylor & Francis Group, 2006.
[32]Aghdam, M.M. Pavier, M.J. Smith, D.J., “Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis,” international journal of solid and structures, Vol. 38, 3905-3925, 2001.