نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی مواد، دانشکده فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

2 استادیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

10.22068/jstc.2020.114732.1592

چکیده

بهبود مقاومت سایشی قلع به‌کمک کامپوزیت‌سازی با روش متالورژی پودر در این پژوهش بررسی شده است. برای این کار، 10 درصد حجمی برنز و چدن از طریق فرآیند پرس و اکستروژن به زمینه قلع اضافه شدند. چگالی، ریزساختار، سختی و مقاومت به سایش (تحت بارهای اعمالی 1 و 3 نیوتن به روش پین بر دیسک) مواد تولید شده، مطالعه شد. چگالی نسبی نمونه‌های اکسترود شده بیشتر از 99 درصد مقدار تئوری اندازه‌گیری شد. مطالعات ریزساختاری نمونه‌های کامپوزیتی نشان داد که ذرات تقویت کننده به خوبی درون زمینه قلع توزیع شده‌اند. افزودن ذرات برنز و چدن به قلع خالص موجب افزایش سختی به ترتیب به مقدار 8 و 15 درصد و کاهش حجم از دست رفته به میزان 51 و 40 درصد (درنیروی نرمال 1 نیوتن) شد. کمترین ضریب اصطکاک در آزمون سایش کامپوزیت قلع-چدن در نیروی اعمالی 3 نیوتن (برابر با 0.37) حاصل شد. علاوه بر این، نقش موثر ذرات برنز و به خصوص چدن در کاهش نوسانات اصطکاکی و پایدار شدن اصطکاک نشان داده شد. اگرچه در تمامی نمونه‌ها با افزایش مقدار بار اعمالی، مقدار حجم از دست رفته افزایش یافت اما این تغییر فقط در نمونه های کامپوزیتی با کاهش ضریب اصطکاک همراه بود. این کاهش در کامپوزیت‌ قلع-چدن به علت حضور گرافیت بیشتر در سطح سایش محسوس‌تر بود. نتایج مطالعه میکروسکوپی سطح سایش به همراه طیف‌سنجی توزیع انرژی (EDS) نشان داد که تشکیل لایه‌های اکسیدی بر روی سطح، مکانیزم کنترل سایش در نمونه‌ها بوده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Enhanced wear resistance of pure tin by addition of bronze and Fe-C reinforcing particles

نویسندگان [English]

  • Fatemeh Ghasemi 1
  • Mohammad Moazami-Goudarzi 2
  • Hamidreza Najafi 2

1 Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

Wear resistance enhancement of tin by composite production through powder metallurgy was investigated in the present study. To this end, 10 vol% bronze or cast iron (Fe-C) particles were incorporated within a tin matrix via pressing and extrusion. The produced materials were evaluated by comparing their density, microstructure, hardness and wear resistance. Relative densities of extruded samples were more than 99% of the theoretical value. Homogeneous distribution of reinforcing particles in the matrix was revealed by optical microscopy. The introduction of bronze and Fe-C powders within the tin matrix were accompanied by 8 and 15% increase in hardness value together with 51 and 40% decrease in wear loss, respectively. On the other hand, the least friction coefficient (0.37) obtained from the sample containing Fe-C particles worn under 3 N applied load. In addition, the frictional behavior of pure tin showed a more stable trace with the addition of reinforcing particles. While an increase in applied load led to an increase in volume loss of both reinforced and unreinforced tin, it only resulted in a reduction in friction coefficient in the composite specimens. This reduction was considerable especially for the tin matrix composites reinforced with cast iron where a higher amount of graphite particles was smeared out on the wear surface due to the increased normal load. Microscopic study of the worn surfaces together with EDS analysis showed that oxidative wear was active during sliding wear of pure tin and its composites.

کلیدواژه‌ها [English]

  • Tin-matrix Composites
  • Microstructure
  • Wear behavior
  • Friction coefficient
[1]Mazumdar, S.K., Composites Manufacturing Materials, Product, and Process Engineering, 1st ed., CRC Press LLC, USA, 2002.
[2]Ibrahim, I. A., Mohamed F.A. and Lavernia E.J., “Particulate Reinforced Metal Matrix Composite”, Journal of Materials Science, Vol. 26, pp. 1137-1156, 1991.
[3]Sedighi, M. Shakibaei-Nasab, M. and Jabbari-Mostahsan, A.H., “Fabrication of FGM sheet of aluminum matrix composite using powder metallurgy and hot-rolling processes”, In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 69-78, 2019.
[4]Miracle, D.B., “Metal Matrix Composite – From Science to Technological Significance”, Composites Science and Technology, Vol. 65, pp. 2526-2540, 2005.
[5]Rousta, Z., Khosravi, H., Tohidlou, E.,“Effect of Er addition on the microstructural characteristics and compressive behavior of insitu Al-15 wt.% Mg2Si composites”, In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 2, pp. 242-247, 2019.
[6]JenabaliJahromi, S.A., MoazamiGoudarzi, M. and Nazarboland, A., “Failure Analysis ofGE-F9 Gas Turbine Journal Bearings”, Iranian Journal of Science and Technology, Vol. 32, No. B1, pp. 61-66, 2008.
[7]MoazamiGoudarzi, M., JenabaliJahromi, S.A. and Nazarboland, A., “Investigation of Characteristics of Tin-Based White Metals as a Bearing Material”, Materials and Design, Vol. 30, pp. 2283–2288, 2009.
[8]Wu, H., Zhu, Sh., Cheng, J., Qiao, Zh. and Yang, J., “Tribological Behavior of Tin-Based Babbitt Alloy Lubricated by Seawater”, Tribology Transactions, Vol. 59, pp. 838-844, 2016.
[9]Ho, C.T., “Coated Carbon Fibres and their Composites with Tin-Lead Matrix”, Journal of Materials Science Letters, Vol. 14, pp. 135-138, 1995.
[10]Leszczynśka-Madej, B., Madej, M. and Hrabia-Wiśnios, J., “Effect of Chemical Composition on the Microstructure and Tribological Properties of Sn-Based Alloys”, Journal of Materials Engineering and Performance, Vol. 28, pp. 4065-4073, 2019.
[11]Junior, P.R.C.A. and Pukasiewicz, A.G.M., “Evaluation of Microstructure, Mechanical and Tribological Properties of a Babbitt Alloy Deposited By Arc and Flame Spray Processes”, Tribology International, Vol. 131, pp. 148-157, 2019.
[12]Ni, Y., Li, X., Dong, G., Tong, Zh. and Mei, T., “The Combined Effect of La and Heat Treatment on The Tribological Performances of Tin-Babbitt Alloy”, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology Vol. 233, pp. 117-1126, 2019.
[13]Dhanabalakrishnan, M., Sangaravadivel, P., Babu,N.and Shenbagaraj, R., “Development of Particulate Reinforced MMC to Improve Tribological Properties for Bush Bearing”, International Journal of Scientific and Engineering Research, Vol. 4, pp. 1-8, 2013.
[14]Gujar, R.S. and Navthar, R.R., “Tribological Investigation and Development of Tin Based Babbitt Composite Material”, International Research Journal of Engineering and Technology, Vol. 4, pp. 3190-3196, 2017.
[15]Tasgin, Y., “Effect of MgO, Al2O3 and FeCr2O4 on Microstructure and Wear Resistance of Babbitt Metal (Sn–Sb–Cu)”, Materials Research Express, Vol. 6, 046548, 2019.
[16]HO, C.T.,” Wear of Carbon Fibres – Reinforced Tin-Lead Alloy Composites”, Journal of Materials Science Letters, Vol. 16, pp. 1767-1770, 1997.
[17]ASTM G99-05, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus.
[18]Khonsari, M.M. and Booser, E.R., Applied Tribology: Bearing Design and Lubrication, 2nd ed., John Wiley & Sons, New York, 2008.
[19]Rouhi, M., Moazami-Goudarzi, M. and Ardestani, M., “Comparison of effect of SiC and MoS2 on wear behavior of Al matrix composites”, Transactions of Nonferrous Metals Society of China, Volume 29, pp. 1169-1183, 2019.
[20]Moazami-Goudarzi, M. and Nemati, A., “Tribological behavior of self lubricating Cu/MoS2 composites fabricated by powder metallurgy”, Transactions of Nonferrous Metals Society of China, Volume 28, pp. 946-956, 2018.
[21]Bhushan, B., Principles and Applications of Tribology, 2nd ed., John Wiley & Sons, New York, 2013.
[22]Matucha, K.H., Materials Science and Technology, Structure and Properties of Nonferrous Alloys, 1st ed., Wiley, USA, 1996.
[23]Moazami-Goudarzi,M. and Akhlaghi, F., “Wear Behaviour of Al 5252 Alloy Reinforced with Micrometric and Nanometric SiC Particles”, Tribology International, Vol. 102, pp. 28-37, 2016.
[24]Lopez, A.J., Rodrigo, P., Torres, B. and Rams, J., “Dry Sliding Wear Behavior of ZE41A Magnesium Alloy”, Wear, vol. 271, pp. 2836-2844, 2011.
[25]Taltavull, C., Torres, B., Lopez, A.J., and Rams, J., “Dry Sliding Wear Behavior Of AM60B Magnesium Alloy”, Wear, Vol. 301, pp. 615–625, 2013.