نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فناو ر ی نانو، دانشگاه تربیت مدرس، تهران

2 استاد، مهندسی متالورژی ، دانشگاه تربیت مدرس، تهران

3 استاد مهندسی متالورژی، دانشگاه برونل لندن، لندن

4 دانشج وی دکتری متالورژ ی، دانشگاه تربیت مدرس، تهران

10.22068/jstc.2019.105533.1531

چکیده

در این پژوهش پوشش‌های نانوکامپوزیتی روی/اکسیدروی به‌عنوان تارگت‌های کندوپاش با استفاده از فرآیند پاشش‌سرد، تولید شد. پودرهای نانوکامپوزیتی با درصدهای وزنی مختلف 25، 50 و 75 از نانوذرات اکسیدروی با استفاده از فرآیند آسیاکاری مکانیکی، تولید شده و با سامانه پاشش سرد، در فشار 15 بار گاز نیتروژن و دمای 150 درجه‌سانتیگراد، از فاصله 35 میلی‌متری بر بسترهایی از مس خالص پاشیده شد. موروفولوژی پودرهای کامپوزیتی با استفاده از میکروسکوپ الکترونی عبوری، و سطح سایش، ریزساختار ایجادشده و براده‌های سایش، با استفاده از میکروسکوپ‌ الکترونی روبشی مطالعه شد. اثر افزایش درصدوزنی نانوذرات اکسیدروی بر میزان مقاومت به سایش پوشش‌ها، استحکام چسبندگی و زبری سطح، مورد بررسی قرار گرفت. استحکام چسبندگی پوشش‌ها، با استفاده از آزمون خمش سه‌نقطه‌ای و زبری سطح پوشش‌ها، با بهره‌گیری از دستگاه زبری‌سنج بررسی شد. نتایج نشان داد که با افزایش میزان نانوذرات، به‌دلیل شکستن و خرد شدن ذرات بزرگ‌تر و همچنین عدم اتصال مناسب ذرات سخت تقویت کننده با زمینه، ضمن کاهش زبری سطح، میزان ضریب اصطکاک، ابتدا کاهش و سپس افزایش می‌یابد؛ در حالی‌که استحکام چسبندگی، ابتدا با افزایش و سپس با کاهش روبروست. همچنین مشخص شد به‌دلیل افزایش ذرات سرامیکی، مکانیزم سایش، از حالت سایش چسبان به‌حالت سایش خراشان تغییر می‌کند.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of tribological properties of Zn/ZnO nanocomposite targets produced by cold spray process

نویسندگان [English]

  • Mahdi Kadkhodaee 1
  • Amir Abdollah-zadeh 2
  • Hamid Assadi 3
  • Rajab Ali Seraj 4

1 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

2 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

3 Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University London, Uxbridge, UK

4 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

چکیده [English]

The purpose of this study is to produce Zn/ZnO Nanocomposite coatings using cold spray process for sputtering targets applications. Nanocomposite powders were synthesized with different weight percentages of 25, 50 and 75 of ZnO nanoparticles using mechanical milling process. The feedstock was sprayed on pure copper substrates using nitrogen gas at a constant temperature of 150 °C, pressure of 15 bar and the stand-off distance of 35 mm. The morphology of composite powders was studied using transmiton electron microscopy; and the wear surface, microstructure and wear debris were studied using scanning electron microscopy. The effect of different values of ZnO nanoparticles on the wear behavior, adhesion strength and surface roughness of the coatings were studied. The coatings are evaluated by scanning electron microscopy, optical microscopy, three‐point bending tests, roughness analysis. The results showed that by increasing the nanoparticles, due to breaking and crushing of powders, as well as the lack of proper bonding of the ZnO particles to the substrate, the friction coefficient decreases and then increases with decreasing the surface roughness of the coldsprayed surface, While the adhesion strength, first increases and then decreases. It was also found that increasing the ceramic particles, change the mechanism of adhesive wear to abrasive wear.

کلیدواژه‌ها [English]

  • Cold Spray
  • Zn/ZnO Nanocomposite
  • Tribological Properties
  • Adhesion Strength
  • Surface Roughness
[1]Porter, F. C., “Zinc Handbook: Properties, Processing, and Use in Design”,  CRC Press, First ed., pp. 121-132, 1991.
[2]A. Saatchi, H. Yan and  and S. J. Harris, “The Effect of Current Density on Morphology and Texture of Zinc Electrodeposit on Steel”, In Persian, Journal of Advanced Materials in Engineering, Vol. 20, No. 1, pp. 207-217, 2001.
[3]Kołodziejczak-Radzimska, A. and  Jesionowski, T., “Zinc Oxide—from Synthesis to Application: A Review”, Materials, Vol. 7, No. 4, pp. 2833-2881, 2014.
[4]Moezzi, A., McDonagh, A. M. and  Cortie, M. B., “Zinc Oxide Particles: Synthesis, Properties and Applications”, Chemical Engineering Journal, Vol. 186, pp. 1-22, 2012.
[5]Habibi, N. Ghaffari, M. and Hoseyni, M., “Curing kinetic of micro and nano composites based on styrenine butadiene rubber contains zinc oxide”, In Persian, Journal of Science and Technology of Composites, Vol. 05, No. 02, pp. 253-264, 2018.
[6]Shakeri Shamsi, M., Ahmadi, M. and  Sabet, M., “Al Doped ZnO Thin Films; Preparation and Characterization”, Journal of Nanostructures, Vol. 8, No. 4, pp. 404-407, 2018.
[7]Anderson, J. and  Chris, G. V. d. W., “Fundamentals of Zinc Oxide as a Semiconductor”, Reports on Progress in Physics, Vol. 72, No. 12, pp. 126501, 2009.
[8]Gholami, H. Shakeri, A. and Moosavi, S. H., “Preparation and properties investigation of conductive Polyaniline/Zinc Oxide nanocomposites”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No.1 , pp. 7-12, 2015.
[9]Guanghong, Z., Hongyan, D., Zhang, Y., Hui, D. and  Aihui, L., “Fretting Behavior of Nano-Al2O3 Reinforced Copper matrix Composites Prepared by Coprecipitation”, Metalurgija, Vol. 15, No. 3, pp. 169-179, 2009.
[10]Khodabakhshi, E. Kazemi, Sh. and Ahmadifard, S, “Investigation the mechanical and microstructural propreties of copper surface composite Cu/SiO2 fabricated by friction stir processing”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 426-433, 2018.
[11]Mosbah, A., Moustaghfir, A., Abed, S., Bouhssira, N., Aida, M. S., Tomasella, E. and  Jacquet, M., “Comparison of the Structural and Optical Properties of Zinc Oxide Thin Films Deposited by D.C. And R.F. Sputtering and Spray Pyrolysis”, Surface and Coatings Technology, Vol. 200, No. 1, pp. 293-296, 2005.
[12]Gao, W. and  Li, Z., “Zno Thin Films Produced by Magnetron Sputtering”, Ceramics International, Vol. 30, No. 7, pp. 1155-1159, 2004.
[13]Lin, W., Ma, R., Shao, W., Kang, B. and  Wu, Z., “Properties of Doped Zno Transparent Conductive Thin Films Deposited by RF Magnetron Sputtering Using a Series of High Quality Ceramic Targets”, Rare Metals, Vol. 27, No. 1, pp. 32-35, 2008.
[14]Spadoni, A. and  Addonizio, M. L., “Effect of the Rf Sputtering Power on Microstructural, Optical and Electrical Properties of Al Doped ZnO Thin Films”, Thin Solid Films, Vol. 589, pp. 514-520, 2015.
[15]Güttler, D., Abendroth, B., Grötzschel, R., Möller, W. and  Depla, D., “Mechanisms of Target Poisoning During Magnetron Sputtering as Investigated by Real-Time in Situ Analysis and Collisional Computer Simulation”, Applied Physics Letters, Vol. 85, No. 25, pp. 6134-6136, 2004.
[16]Kim, C., Kim, S. and  Kim, S. E., “Transparent SnOx Thin Films Fabricated by Radio Frequency Reactive Sputtering with a SnO/Sn Composite Target”, Thin Solid Films, Vol. 634, pp. 175-180, 2017.
[17]Zhou, L. Q., Fan, Q. H., Simões, R. and  Neto, V., “High-Rate Sputtering Deposition of High- and Low-Refractive Index Films from Conductive Composites”, MRS Communications, Vol. 5, No. 2, pp. 327-332, 2015.
[18]Assadi, H., Kreye, H., Gärtner, F. and  Klassen, T., “Cold Spraying - a Materials Perspective”, Acta Materialia, Vol. 116, pp. 382-407, 2016.
[19]Arabgol, Z., Villa Vidaller, M., Assadi, H., Gärtner, F. and  Klassen, T., “Influence of Thermal Properties and Temperature of Substrate on the Quality of Cold-Sprayed Deposits”, Acta Materialia, Vol. 127, pp. 287-301, 2017.
[20]Li, W., Assadi, H., Gaertner, F. and  Yin, S., “A Review of Advanced Composite and Nanostructured Coatings by Solid-State Cold Spraying Process”, Critical Reviews in Solid State and Materials Sciences, pp. 1-48, 2018.
[21]Cavaliere, P., “Cold-Spray Coatings”, Springer International Publishing, First ed., pp. 321-348, 2018.
[22]Gärtner, F., Stoltenhoff, T., Schmidt, T. and  Kreye, H., “The Cold Spray Process and Its Potential for Industrial Applications”, Journal of Thermal Spray Technology, Vol. 15, No. 2, pp. 223-232, 2006.
[23]Rostamzadeh, T. and  Shahverd, H., “Microstructure Study on Al-5% SiC Nanocomposite Powders”, Iranian Journal of Materials Science and Engineering, Vol. 8, No. 1, pp. 32-39, 2011.
[24]Magarò, P., Marino, A. L., Maletta, C., Tului, M. and  Di Schino, A., “Tribological Properties of Wear-Resistant Coatings Obtained by Cold Gas Dynamic Spray”, Procedia Structural Integrity, Vol. 9, pp. 287-294, 2018.
[25]Tu, J. P., Yang, Y. Z., Wang, L. Y., Ma, X. C. and  Zhang, X. B., “Tribological Properties of Carbon-Nanotube-Reinforced Copper Composites”, Tribology Letters, Vol. 10, No. 4, pp. 225-228, 2001.
[26]Alidokht, S. A., Abdollah-zadeh, A., Soleymani, S. and  Assadi, H., “Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing”, Materias & Design, Vol. 32, No. 5, pp. 2727-2733, 2011.
[27]Mazaheri, H. fazel Najafabadi, M. and Alaei. A., “Study of Microstructure and Tribological Behavior of the Composite Layer Produced of Silicon Carbide Particles on a Steel ASTM A106 GTAW Welding Method”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 65-72, 2015.
[28]Sharifi, H. Davoodi, D. and Ghayour, H., “Investigating the physical and surface properties at high temperature of the Al/SiC nanocomposite produced by powder metallurgy”, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 33-40, 2015.
[29]Akbari, M., Sabooni, S., Enayati, M. H. and  Karimzadeh, F., “Synthesis and Characterization of FeAl/Al2O3 Nanocomposite Coating on Carbon Steel Plate by High Energy Mechanical Alloying”, In Persian, Journal of Advanced Materials In Engineering, Vol. 36, No. 2, pp. 107-117, 2017.
[30]Gadelmawla, E., Koura, M., Maksoud, T., Elewa, I. and  Soliman, H., “Roughness Parameters”, Journal of materials processing Technology, Vol. 123, No. 1, pp. 133-145, 2002.