نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، دانشکده مهندسی مکانیک، دانشگاه جامع امام حسین(ع)، تهران

2 استادیار، مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه جامع امام حسین)ع(، تهران

3 استاد، مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه جامع امام حسین)ع(، تهران

10.22068/jstc.2020.101831.1506

چکیده

چندلایه‌های فلز-کامپوزیت سازه‌های مرکب تشکیل‌شده از لایه‌های سبک کامپوزیتی و لایه‌های فلزی می‌باشند که دارای مقاومت ضربه‌ای و جذب انرژی بالا همراه با وزن پایین می‌باشند. در این مطالعه، با استفاده از روابط حاکم بر رفتار غیرخطی ورق چندلایه‌ی فلز-کامپوزیت، به بررسی اثرات مختلف حاکم بر ورق مانند دما و بارگذاری دینامیکی پرداخته شده است. بدین منظور با استفاده از تئوری تغییر شکل‌های بزرگ وون کارمن اثرات غیرخطی هندسی در نظر گرفته شده است و معادلات حاکم بر جابجایی ورق با استفاده از اصل کار مجازی استخراج گردیده‌اند. شرایط مرزی در تمامی لبه‌های ورق به صورت تکیه‌گاه ساده در نظر گرفته شده است. سپس معادلات مشتقات جزئی غیرخطی حرکت با استفاده از روش گالرکین به حالت معادلات مشتقی ساده تبدیل شده‌اند که به صورت تحلیلی با استفاده از روش مقیاس‌های چندگانه حل شده‌اند و یک رابطه‌ی تحلیلی برای فرکانس‌های غیرخطی ورق بدست آمده است. نتایج تحلیل تئوری انجام شده با نتایج ارائه شده در مطالعات پیشین مقایسه گردیده و تطابق خوبی مشاهده شده است. با استفاده از مدل تحلیلی اعتبارسنجی شده، اثر تغییرات درجه حرارت، بستر الاستیک و مقادیر حداکثر فشار مورد بررسی قرار گرفت. نتایج نشان داد که افزایش دامنه بارگذاری، منجر به افزایش تغییر شکل و کاهش نسبت فرکانسی سیستم خواهد شد. همچنین نتایج نشان داد که چندلایه‌های فلز کامپوزیت می‌توانند انتخاب مناسبی برای سازه‌های تحت بارگذاری دینامیکی ‌باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Non-linear response of Fiber Metal Laminates subjected to temperature and dynamic loadings

نویسندگان [English]

  • Ali Kiani 1
  • Rouhollah Hosseini 2
  • Hossein Khoda-Rahmi 3

1 Department of Solid Mechanics, Faculty of Engineering, Imam Hossein Comprehensive University, Tehran, Iran

2 Department of Solid Mechanics, Faculty of Engineering, Imam Hossein Comprehensive University, Tehran, Iran

3 Department of Solid Mechanics, Faculty of Engineering, Imam Hossein Comprehensive University, Tehran, Iran

چکیده [English]

Fiber metal laminates (FMLs) are hybrid structures composed of composite lightweight layers and aluminum layers that have high impact resistance and energy absorption along with low weight. In this study, by using of governing equation of non-linear behavior of FMLs, the effect of various parameter such as temperature and dynamic loading have been investigated. For this purpose, the geometric nonlinearity effects are taken into account with the von Kármán large deflection theory and the governing equations of motion for the plate are derived by the use of the virtual work principle. The simply supported boundary conditions are considered for all edges of the plate. Then, Nonlinear Partial differential Equations (PDEs) of motion by using of the Galerkin method are transformed to a single nonlinear Ordinary Differential Equation (ODE), which is solved analytically by the multiple time scales method, and an analytical relation is found for the nonlinear frequency of these plates. The results of conducted theoretical analyses compared with the presented results in the literature and good agreement is found. By using the validated theoretical model, the influences of changes in temperature change, elastic foundation and peak pressure values are investigated. The results indicated that increasing the peak pressure values would lead to an increase in deformation and a decrease in the frequency ratio of the system. The results also show that FMLs would be a good choice for structures under dynamic loads.

کلیدواژه‌ها [English]

  • Fiber–metal laminates
  • von Kármán
  • geometric nonlinearity
  • dynamic loading
[1]Botelho, E. C., Silva, R. A., Pardini, L. C. and  Rezende, M. C.,“A Review on the Development and Properties of Continuous Fiber/Epoxy/Aluminum Hybrid Composites for Aircraft Structures“, Materials Research, Vol. 9, No. 3, pp. 247-256, 2006 
[2]Ghasemi, A. R., Mohandes, M., Dimitri, R. and  Tornabene, F. J.,“Agglomeration Effects on the Vibrations of Cnts/Fiber/Polymer/Metal Hybrid Laminates Cylindrical Shell“, Composites Part B: Engineering, Vol. 167, pp. 700-716, 2019.
[3]Mohandes, M., Ghasemi, A. R., Irani-Rahagi, M., Torabi, K., Taheri-Behrooz, F. J, “Development of Beam Modal Function for Free Vibration Analysis of Fml Circular Cylindrical Shells“, Journal of Vibration and Control, Vol. 24, No. 14, pp. 3026-3035, 2018.
[4]Ghasemi, A. and  Mohammadi, M. J., “Residual Stress Measurement of Fiber Metal Laminates Using Incremental Hole-Drilling Technique in Consideration of the Integral Method“, International Journal of Mechanical Sciences, Vol. 114, pp. 246-256, 2016.
[5]Botelho, E., Campos, A., De Barros, E., Pardini, L. and  Rezende, M. C.., “Damping Behavior of Continuous Fiber/Metal Composite Materials by the Free Vibration Method“, Composites Part B: Engineering, Vol. 37, No. 2-3, pp. 255-263, 2005.
[6]Sinmazçelik, T., Avcu, E., Bora, M. Ö., Çoban, O., “A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods“, Materials & Design, Vol. 32, No. 7, pp. 3671-3685, 2011.
[7]Vogelesang, L. B. and  Vlot, A.., “Development of Fibre Metal Laminates for Advanced Aerospace Structures“, Journal of Materials Processing Technology, Vol. 103, No. 1, pp. 1-5, 2000..
[8]Caprino, G., Lopresto, V., Iaccarino, P., “A Simple Mechanistic Model to Predict the Macroscopic Response of Fibreglass–Aluminium Laminates under Low-Velocity Impact“, Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 2, pp. 290-300, 2007.
[9]Abdullah, M., Cantwell, W, “The Impact Resistance of Polypropylene-Based Fibre–Metal Laminates“, Composites Science and Technology, Vol. 66, No. 11-12, pp. 1682-1693, 2006.
[10]Atas, C. J. J. o. R. P. and  Composites, “An Experimental Investigation on the Impact Response of Fiberglass/Aluminum Composites“, Vol. 26, No. 14, pp. 1479-1491, 2007.
[11]Faramarz, A. G., Esmaeil, A. F. and  Ali, P. A., “An Experimental Study of Temperature Effect on Low-Velocity Impact Response of Notched Aluminum Plates Repaired by Fml Composite Patches,“ In Persian,  Modares Mechanical Engineering, Vol. 14, No. 9, pp. 175-182, 2014.
[12]Aksoylar, C., Ömercikoğlu, A., Mecitoğlu, Z. and  Omurtag, M. H., “Nonlinear Transient Analysis of Fgm and Fml Plates under Blast Loads by Experimental and Mixed Fe Methods“, Composite Structures, Vol. 94, No. 2, pp. 731-744, 2012.
[13]Harras, B., Benamar, R., White, R. J., “Experimental and Theoretical Investigation of the Linear and Non-Linear Dynamic Behaviour of a Glare 3 Hybrid Composite Panel“, Journal of Sound and Vibration, Vol. 252, No. 2, pp. 281-315, 2002.
[14]Majid, J. O. and  mohammadreza, M. S., “Numerical Investigation of the Behavior of Fml Composite Plates under Low Velocity Impact “ In Persian, Journal of Energetic Materials, Vol. 11, No. 2, pp. 23-38, 2016.
[15]Ghasemi, F. A., Raissi, S., Malekzadehfard, K. “Analytical and Mathematical Modeling and Optimization of Fiber Metal Laminates (Fmls) Subjected to Low-Velocity Impact Via Combined Response Surface Regression and Zero-One Programming“, Latin American Journal of Solids and Structures, Vol. 10, No. 2, pp. 391-408, 2013.
[16]Ashena, G. F., Malekzadeh, F. K. and  Paknejad, R., “Response of Cantilever Fiber Metal Laminate (Fml) Plates Using an Analytical-Numerical Method“, In Persian, Modares Mechanical Engineering, Vol. 13, No. 3, pp. 57-67, 2013.
[17]Kazancı, Z., Mecitoğlu, Z. J., “Nonlinear Dynamic Behavior of Simply Supported Laminated Composite Plates Subjected to Blast Load“, Journal of Sound and Vibration, Vol. 317, No. 3-5, pp. 883-897, 2008.
[18]Keramat, M.-F., hossein, A. A. and  Naser, Z., “Analytical Modeling to Predict Dynamic Response of Fiber-Metal Laminated Panel Subjected to Low Velocity Impact“ In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 331-342, 2018.
[19]Keramat, M.-F., Hasan, P. G. and  Mansour, K., “Dynamic Response Analysis of a Sandwich Plate with a Flexible Core and Elastic Substrate under a Low Velocity Impact“ In Persian, Amirkabir Journal of Science & Research (Mechanical Engineering), Vol. 45, No. 2, pp. 27-42, 2013.
[20]Payeganeh, G. H., Ghasemi, F. A. and  Malekzadeh, K., “Dynamic Response of Fiber–Metal Laminates (Fmls) Subjected to Low-Velocity Impact“, Thin-Walled Structures, Vol. 48, No. 1, pp. 62-70, 2010.
[21]Morinière, F., Alderliesten, R. and  Benedictus, R., “Energy Distribution in Glare and 2024–T3 Aluminium During Low-Velocity Impact“, 2012.
[22]Morinière, F., Alderliesten, R., Sadighi, M. and  Benedictus, R., “An Integrated Study on the Low-Velocity Impact Response of the Glare Fibre-Metal Laminate“, Composite Structures, Vol. 100, pp. 89-103, 2013.
[23]Reza, J. and  Farzad, S. M., “Geometrically Nonlinear Dynamic Analysis of Fml Cylindrical Shells under Blast Loading“ In Persian, in Conference on Civil engineering, Architecture & Urban planning of the ISLAMIC COUNTRIES, Iran-Tabriz, 2018.
[24]Kazancı, Z. J. I. J. o. N.-L. M., “Dynamic Response of Composite Sandwich Plates Subjected to Time-Dependent Pressure Pulses“, International Journal of Non-Linear Mechanics, Vol. 46, No. 5, pp. 807-817, 2011.
[25]Setoodeh, A., Malekzadeh, P., Nikbin, K. J. M. and  Design, “Low Velocity Impact Analysis of Laminated Composite Plates Using a 3d Elasticity Based Layerwise Fem“, Vol. 30, No. 9, pp. 3795-3801, 2009.
[26]Caprino, G., Spataro, G., Del Luongo, S.“Low-Velocity Impact Behaviour of Fibreglass–Aluminium Laminates“, Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 5, pp. 605-616, 2004.
[27]Kumari, E. and  Singha, M., “Nonlinear Response of Laminated Panels under Blast Load“, Procedia Engineering, Vol. 173, pp. 539-546, 2017.
[28]Dobyns, A.“Analysis of Simply-Supported Orthotropic Plates Subject to Static and Dynamic Loads“, AIAA Journal, Vol. 19, No. 5, pp. 642-650, 1981.
[29]Baştürk, S., Uyanık, H. and  Kazancı, Z., “An Analytical Model for Predicting the Deflection of Laminated Basalt Composite Plates under Dynamic Loads“, Composite Structures, Vol. 116, pp. 273-285, 2014.
[30]Ghasemi, A., Taheri-Behrooz, F., Farahani, S., Mohandes, M., “Nonlinear Free Vibration of an Euler-Bernoulli Composite Beam Undergoing Finite Strain Subjected to Different Boundary Conditions“, Journal of Vibration and Control, Vol. 22, No. 3, pp. 799-811, 2016.
[31]Mohandes, M., Ghasemi, A. R., “Finite Strain Analysis of Nonlinear Vibrations of Symmetric Laminated Composite Timoshenko Beams Using Generalized Differential Quadrature Method“, Journal of Vibration and Contro, Vol. 22, No. 4, pp. 940-954, 2016.
[32]Ghasemi, A., Mohandes, M., “Nonlinear Free Vibration of Laminated Composite Euler-Bernoulli Beams Based on Finite Strain Using Generalized Differential Quadrature Method“, Mechanics of Advanced Materials and Structures, Vol. 24, No. 11, pp. 917-923, 2017.
[33]Whitney, J. and  Pagano, N., “Shear Deformation in Heterogeneous Anisotropic Plates“, Journal of Applied Mechanices, Vol. 37, No. 4, pp. 1031-1036, 1970.
[34]Yamaki, N., “Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates“, Vol. 41, No. 12, pp. 501-510, 1961.