نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای تخصصی، مهندسی مکانیک، دانشگاه تبریز، تبریز

2 دانشیار، مهندسی مکانیک، دانشگاه تبریز، تبریز

3 دانشیار، فیزیک لیزر، دانشگاه تبریز، تبریز

10.22068/jstc.2020.112387.1574

چکیده

در این پژوهش استحکام اتصال کامپوزیت سوپر آلیاژ پایه نیکل Hastelloy X و فولاد زنگ نزن آستنیتی AISI 304L که با استفاده از جوشکاری لیزری تولید شده، مورد مطالعه قرار گرفته است. بدین منظور، دو قطعه ورق ناهمجنس به ضخامت یک میلی‌متر، به صورت لب به لب و در فیکسچر ورق قرار گرفته و با استفاده از پرتو لیزر Nd-YAG پالسی مورد جوشکاری قرار گرفته‌اند. برای انجام جوشکاری از مقادیر مختلف برای توان جوشکاری، عرض پالس پرتو لیزر و سرعت جوشکاری استفاده شده و مقادیر پارامترهای فرکانس پرتو، دبی گاز محافظ و قطر پرتو بر روی سطح قطعه، ثابت نگه داشته شده‌اند. پس از جوشکاری، نمونه‌های استاندارد آزمایش استحکام از قطعات ورق بریده شده و تحت آزمایش‌های کشش در دمای بالا و خزش با بار ثابت قرار گرفته‌اند. نتایج آزمایش‌های کشش و خزش نشان می‌دهد که با انتخاب صحیح پارامترهای جوشکاری لیزری می‌توان اتصال مناسبی میان آلیاژهای Hastelloy X و AISI 304L به دست آورد، به گونه‌ای که در برخی از نمونه‌ها استحکام اتصال بیش از استحکام آلیاژ پایه ضعیف‌تر (AISI 304L) بوده و شکست در نواحی دورتر از اتصال اتفاق افتاده است. همچنین ساختار اتصال با استفاده از میکروسکوپ‌های نوری و‌ الکترونی روبشی بررسی شده است. داده‌های حاصل از این میکروسکوپ‌ها نشان داده است که با بهینه‌سازی پارامترهای توان پرتو، سرعت جوشکاری و عرض پالس پرتو، اتصال تقریباً بدون ایراد قابل دستیابی است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of high-temperature strength of composite joint Hastelloy X - AISI 304L manufactured by laser welding

نویسندگان [English]

  • Hamed Halimi-Khosroshahi 1
  • Farid Vakili -Tahami 2
  • Ebrahim Safari 3

1 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran.

3 Department of Physics, University of Tabriz, Tabriz, Iran.

چکیده [English]

This study investigates the strength of Hastelloy X nickel-based superalloy and AISI 304L austenitic stainless steel composite joint produced by laser welding. Two pieces of 1mm thick dissimilar plates are butt jointed together on a sheet fixture and welded using a pulsed Nd-YAG laser beam. In the welding process, different values are used for welding power, laser beam pulse width and welding speed. Values for the beam frequency, shielding gas flow rate and beam diameter are kept constant on the surface of the work piece. After welding, suitable specimens were cut from sheet components and subjected to high-temperature tensile tests and constant load creep. The results of tensile and creep tests show that by choosing the right laser welding parameters, a proper bonding between Hastelloy X and AISI 304L alloys can be achieved. In some samples, the joints strength is higher than the corresponding value of base alloy strength (AISI 304L), and the failure occurred in the base alloy region. Optical and scanning electron microscopes have also been used to examine the structure of the joint. The data from these microscopes shows that joints almost free of defects can be achieved by optimizing the beam power, welding speed and pulse width.

کلیدواژه‌ها [English]

  • AISI 304L – Hastelloy X composite
  • Laser welding
  • High-temperature tensile
  • Creep
  • Scan electron microscope
[1]Varghese, P., Vetrivendan, E., Dash, M. K., Ningshen, S., Kamaraj, M. and  Kamachi Mudali, U., “Weld Overlay Coating of Inconel 617 M on Type 316 L Stainless Steel by Cold Metal Transfer Process,” Surface and Coatings Technology, Vol. 357, pp. 1004-1013, 2019.
[2]Kangazian, J. and Shamanian, M., “Micro-Texture and Corrosion Behavior of Dissimilar Joints of UNS S32750 Stainless Steel/UNS N08825 Ni-Based Superalloy,” Materials Characterization, Vol. 155, pp. 109802, 2019.
[3]Schafrik, R. E., Ward, D. D. and Groh, J. R., “Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years” in Proceeding of Proceedings of the International Symposium on Superalloys and Various Derivatives, pp. 1-11.
[4]Sharma, S., Taiwade, R. V. and  Vashishtha, H., “Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments between Hastelloy C-276/AISI 321 Austenitic Stainless Steel,” Journal of Materials Engineering and Performance, Vol. 26, No. 3, pp. 1146-1157, 2017.
[5]Sarvari, M. and  Divandari, M., “Effect of Solid Ring Preheating and Cooling Conditions on Bonding of Mg-Al Composite Produced by Centrifugal Casting,” In Persian, Journal of Science and Technology of Composites , Vol. 3, No. 1, pp. 85-91, 2016.
[6]Khodabakhshi, M. and  Mahmoodi, M., “A Study of Layer Strength in Composite Al 1050/SS 316 Manufactured by Accumulative Roll Bonding Process,” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 479-484, 2019.
[7]Shabani, M., Shaghayegh Boroujeni, B. and  Ebrahimi Kahrizsangi, R., “Effect of Tool Rotation Speed on the Mechanical Properties and Corrosion Behavior of Dissimilar Friction Stir Welded of 5083 Aluminum Alloy and Commercially Pure Titanium,” In Persian, Advanced Processes in Materials, Vol. 11, No. 4, pp. 79-96, 2018.
[8]Fabbro, R., “Developments in Nd-YAG Laser Welding,” Handbook of Laser Welding Technologies, Eds., pp. 47-72, 2013.
[9]Katayama, S., “Defect Formation Mechanisms and Preventive Procedures in Laser Welding,” in: Handbook of Laser Welding Technologies, Eds., pp. 332-373, 2013.
[10]Miller, K. J. and Nunnikhoven, J. D., “Laser - a Space Age Welding Process,” SAE Technical Papers, 1965.
[11]Battista, A. D. and  Ponti Sr, M. A., “Laser Welding of Microcircuit Interconnections - Simultaneous Multiple Bonds of Aluminum to Kovar“ SAE Technical Papers, 1968.
[12]Shaikh Meiabadi, M. S., Kazerooni, A. and  Moradi, M., “Experimental and Numerical Investigation of Laser Assisted Pc to Polycarbonate Welding,” In Persian, Journal of Welding Science and Technology of Iran, Vol. 4, No. 2, pp. 99-109, 2019.
[13]Faraji, A. H., Goodarzi, M., Seyedein, S. H. and  Maletta, C., “Investigation of the Capability of Hybrid Nd:YAG – TIG Welding against Nd:YAG Laser Welding Process for Aluminum Foam Sandwich Panels,” In Persian, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 349-356, 2017.
[14]Stavridis, J., Papacharalampopoulos, A. and  Stavropoulos, P., “Quality Assessment in Laser Welding: A Critical Review,” International Journal of Advanced Manufacturing Technology, Vol. 94, No. 5-8, pp. 1825-1847, 2018.
[15]Sun, Z. and  Moisio, T., “Comparative Evaluation of Tube-to-Tube Dissimilar Steel Joints Made by Laser, Plasma and TIG Welding,” International Journal for the Joining of Materials, Vol. 5, No. 1, pp. 19-29, 1993.
[16]Mai, T. A. and  Spowage, A. C., “Characterisation of Dissimilar Joints in Laser Welding of Steel-Kovar, Copper-Steel and Copper-Aluminum,” Materials Science and Engineering A, Vol. 374, No. 1-2, pp. 224-233, 2004.
[17]El-Batahgy, A. M., “Effect of Laser Welding Parameters on Fusion Zone Shape and Solidification Structure of Austenitic Stainless Steels,” Materials Letters, Vol. 32, No. 2-3, pp. 155-163, 1997.
[18]das Nevesa, M. D. M., Lottob, A., Berrettac, J. R., de Rossid, W. and  Júniord, N. D. V., “Microstructure Development in Nd:YAG Laser Welding of AISI 304 and Inconel 600,” Welding International, Vol. 24, No. 10, pp. 104-113, 2010.
[19]Wei, Y. P., Li, M. H., Yu, G., Wu, X. Q., Huang, C. G. and  Duan, Z. P., “Effects of Laser Power Density on Static and Dynamic Mechanical Properties of Dissimilar Stainless Steel Welded Joints,” Acta Mechanica Sinica/Lixue Xuebao, Vol. 28, No. 5, pp. 1334-1339, 2012.
[20]Parkes, D., Xu, W., Westerbaan, D., Nayak, S. S., Zhou, Y., Goodwin, F., Bhole, S. and Chen, D. L., “Microstructure and Fatigue Properties of Fiber Laser Welded Dissimilar Joints between High Strength Low Alloy and Dual-Phase Steels” Materials and Design, Vol. 51, pp. 665-675, 2013.
[21]Parkes, D., Westerbaan, D., Nayak, S. S., Zhou, Y., Goodwin, F., Bhole, S. and Chen, D. L., “Tensile Properties of Fiber Laser Welded Joints of High Strength Low Alloy and Dual-Phase Steels at Warm and Low Temperatures,” Materials and Design, Vol. 56, pp. 193-199, 2014.
[22]Li, G., Huang, J. and  Wu, Y., “An Investigation on Microstructure and Properties of Dissimilar Welded Inconel 625 and SUS 304 Using High-Power Co 2 Laser,” International Journal of Advanced Manufacturing Technology, Vol. 76, No. 5-8, pp. 1203-1214, 2014.
[23]Zhou, S., Chai, D., Yu, J., Ma, G. and Wu, D., “Microstructure Characteristic and Mechanical Property of Pulsed Laser Lap-Welded Nickel-Based Superalloy and Stainless Steel,” Journal of Manufacturing Processes, Vol. 25, pp. 220-226, 2017.
[24]Kumar, N., Mukherjee, M. and Bandyopadhyay, A., “Comparative Study of Pulsed Nd-YAG Laser Welding of AISI 304 and AISI 316 Stainless Steels,” Optics and Laser Technology, Vol. 88, pp. 24-39, 2017.
[25]Liu, T., Yang, L. J., Wei, H. L., Qiu, W. C. and  Debroy, T., “Composition Change of Stainless Steels During Keyhole Mode Laser Welding” Welding Journal, Vol. 96, No. 7, pp. 258s-270s, 2017.
[26]Sakiyan, S., Sabet, H. and  Abbasi, M., “Study the Profile Shape and Mechanical Properties of Bonded Joint Hnv3 to Nimonic 80a Superalloy with Inertia Friction Welding Method,” In Persian, Journal of Welding Science and Technology of Iran Vol. 2, No. 1, pp. 14-20, 2016.
[27]Kangazian, J., Shamanian, M. and Ashrafi, A., “Dissimilar Welding between SAF 2507 Stainless Steel and Incoloy 825 Ni-Based Alloy: The Role of Microstructure on Corrosion Behavior of the Weld Metals,” Journal of Manufacturing Processes, Vol. 29, pp. 376-388, 2017.
[28]Metallic Materials - Tensile Testing - Part 2: Method of Test at Elevated Temperature, BS En ISO 6892-2, 2018.
[29]Lippold, J. C., Kotecki, D. J. J. W. M. and  Weldability of Stainless Steels, b. J. C. L., Damian J. Kotecki, pp. 376. ISBN 0-471-47379-0. Wiley-VCH, March. “Welding Metallurgy and Weldability of Stainless Steels,” pp. 376, 2005.
[30]Lippold, J. C., Kiser, S. D. and DuPont, J. N., “Welding Metallurgy and Weldability of Nickel-Base Alloys,” John Wiley & Sons, 2011.
[31]Zhu, X. K. and  Chao, Y. J., “Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304l Stainless Steel” Journal of Materials Processing Technology, Vol. 146, No. 2, pp. 263-272, 2004.
[32]Pramanik, A. and Basak, A. K., “Stainless Steel: Microstructure, Mechanical Properties and Methods of Application”, Nova Science Publishers, Inc., 2015.