نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

2 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه آزاد اسلامی کرج.

3 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه آزاد اسلامی علوم تحقیقات تهران.

4 دانشیار، مهندسی مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.

10.22068/jstc.2019.109800.1561

چکیده

در این پژوهش، تاثیر چیدمان الیاف و سیکل حرارتی بر رفتار خمشی کامپوزیت های لایه ای الیاف- فلز (FML) حاوی دو نوع الیاف تقویت کننده مورد مطالعه قرار گرفت. نمونه های FML متشکل از ورق آلومینیوم 2024-T3 و کامپوزیت اپوکسی با الیاف شیشه و الیاف کولار در 2 حالت لایه چینی به روش لایه گذاری دستی ساخته شدند. هر سیکل دمایی در مدت زمان 2 دقیقه بین دمای 150- و 100 °C انجام شد. خواص خمشی نمونه ها بعد از 20، 40 و 60 سیکل حرارتی مورد ارزیابی قرار گرفت و با نمونه های بدون سیکل مقایسه شدند. در نمونه های بدون سیکل، بیشترین استحکام و مدول خمشی و انرژی شکست مربوط به نمونه ای بود که الیاف کولار در لایه زیرین کامپوزیت و متصل به آلومینیوم قرار داشتند. با اعمال سیکل حرارتی برای نمونه مذکور، مقادیر استحکام و مدول خمشی و انرژی شکست در 40 سیکل در مقایسه با نمونه بدون سیکل، به ترتیب 8، 9 و 35 درصد افزایش یافتند در حالی که برای نمونه 60 سیکل، این خواص سیر نزولی داشتند. در حالت مشابه برای نمونه ای که الیاف شیشه در لایه زیرین کامپوزیت قرار داشت، استحکام و مدول خمشی و انرژی شکست در 40 سیکل نسبت به نمونه بدون سیکل به ترتیب 10، 14 و 9 درصد افزایش یافتند، اما مجدداً در 60 سیکل کاهش خواص دیده شد. نتایج این تحقیق همچنین نشان داد که سه مکانیزم پخت ثانویه، تنش فشاری و جدایش بین اجزای FML، عوامل اصلی تغییر خواص خمشی در حین سیکل حرارتی بودند.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation the flexural behavior of fiber metal laminates containing glass and Kevlar fibers subjected to thermal cycling

نویسندگان [English]

  • Mehdi Abdollahi Azghan 1
  • Mehrdad Fallahnejad 2
  • Amin Zamani 3
  • Reza Eslami-Farsani 4

1 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 Faculty of Mechatronics, Karaj Branch, Islamic Azad University, Alborz, Iran.

3 Faculty of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

4 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

چکیده [English]

In this study, the effects of stacking sequence and thermal cycling on the flexural behavior of fiber metal laminates (FML) including glass and Kevlar fibers were investigated. The FML samples were composed of aluminum 2024-T3 sheet and epoxy composite. The polymer composites consisted of glass fibers and Kevlar fibers. These composites were prepared in 2 different fibers arrangement by hand lay-up method. Each thermal cycle was carried out for 2 min between -150 and 100 °C. The FML samples were cycled for 20, 40 and 60 times and their flexural performance was evaluated before and after thermal cycling. The highest values of flexural strength and modulus, and fracture energy were related to sample that Kevlar fibers were the bottom layer of composites. With applying 40 thermal cycles to the mentioned sample, the flexural strength and modulus and fracture energy values were respectively increased to 8, 9 and 35 percent compared to the samples without cycling. While a decreasing trend was observed for samples with 60 cycles compared to the samples with 40 cycles. When the glass fibers were the bottom layer of composites, flexural strength and modulus and fracture energy values were respectively increased to 10, 14 and 9 percent with applying 40 thermal cycles, compared to sample without thermal cycles. But in 60 cycles, flexural properties were reduced. Results of this research indicated that post curing, compressive stress and deboning between components of FML were three main mechanisms for changing the flexural properties of samples during thermal cycling.

کلیدواژه‌ها [English]

  • Fiber-metal laminate composite
  • Thermal cycling
  • Stacking sequence fibers
  • Flexural properties
[1] Abdollahi Azghan, M. and Eslami-Farsani, R., “Experimental investigation of effect of thermal cycling and metal surface treatment on flexural properties laminate composite of aluminium-epoxy/basalt fibers,” In Persian, Modares Mechanical Engineering, Vol. 17, No. 8, pp. 369-376, 2017.
[2] Abdollahi Azghan, M. and Eslami-Farsani, R., “The Effects of Stacking Sequence and Thermal Cycling on the Flexural Properties of Laminate Composites of Aluminium-Epoxy/Basalt-Glass Fibres, Materials Research Express,” Vol. 399, No. 1, pp. 25-32, 2018.
[3] Eslami-Farsani, R. Mohabbati, F. and Khosravi, H., “Experimental study of tensile behavior of self-healing fiber-metal laminates composites with chopped hollow glass fibers”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 399-404, 2018.
[4] Sadighi, M., Alderliesten, R. and Benedictus, R., “Impact resistance of fiber-metal laminates: a review,” International Journal of Impact Engineering, Vol. 49, pp. 77-90, 2012.
[5] Aghamohammadi, H., Hosseini-Abbandanak, S. N., Eslami-Farsani, R., and Siadati, S. M. H., “Effect of various surface treatment methods on the flexural properties of fiber metal laminates,” In Persian, Journal of Science and Technology of Composites, 2018.
[6] Nazari, A. Naderi, A.A. Malekzadefard, K. and Hatami, A., “Experimental and numerical analysis of vibration of FML- stiffened circular cylindrical shell under clamp-free boundary condition”, In Persian, Journal of Science and Technology of Composites, Vol. 6, No. 1, pp. 9-20, 2019.
[7]  Botelho, E. C., Silva, R. A., Pardini, L. C., Rezende, M. C., “A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures,” Materials Research, Vol. 9, No. 3, pp. 247-256, 2006.
[8]  Ostapiuk, M., Surowska, B. and Bieniaś, J., “Interface analysis of fiber metal laminates,” Composite Interfaces, Vol. 21, No. 4, pp. 309-318, 2014.
[9]  Marzuki, H. F. A., Mohamad, M., Ubaidillah, E., Ahmadhilmi, E., Nordin, M. N. A, Abidin, Z., Fadzlee, M., Roslani, N., Junos, Y. M. and Omar, S., “Effect of Anodizing on Strength of Carbon-Fibre Aluminium-Laminated Composites,” in Proceeding of Trans Tech Publ, vol. 748, pp. 216-221, 2013.
[10] Wang, W. X., Takao, Y., Matsubara, T., “Galvanic corrosion-resistant carbon fiber metal laminates,” In Proceeding of The 16th International Conference on Composite Materials, Kyoto, Japan, July 8-13, 2007.
[11] Rawal, S. P.  “Metal-Matrix Composites for Space Applications,”The Journal of The Minerals, Metals & Materials Society, Vol. 53, No. 4, pp. 14-17, 2001.
[12] Mahdavi, S., “Thermal Cycling of Out‐Of‐Autoclave Thermosetting Composite Materials,”  Thesis, Concordia University, Canada, 2017.
[13] Hagenbeek, M., Müller, B. and Sinke, J., “Effect of Thermal Cycling and Aging on Heated Fiber Metal Laminates and Glass‐Fiber Epoxy Composites,” Advanced Engineering Materials, pp. 1-10, 2018.
[14] Abdollahi Azghan, M., Arpatapeh, F. A. and Eslami-Farsani, R., “Experimental study of the effect of cryogenic cycling and metal surface treatment on flexural properties of aluminum- epoxy/basalt fibers laminate composite,” In Persian, Iranian Journal of Manufacturing Engineering, Vol. 4, No. 1, pp. 15-24, 2017.
[15] Da Costa, A. A., Da Silva, D. F., Travessa, D. N. and Botelho, E. C., “The effect of thermal cycles on the mechanical properties of fiber–metal laminates,” Materials & Design, Vol. 42, pp. 434-440, 2012.
[16] Noor, M. F., Pasha, R. A., Wakeel, A., Nasir, M. A. and Bilal, Y., “Effect of thermal cycling on the tensile behavior of Cf/Al fiber metal laminates,” Advances in Science and Technology Research Journal, Vol. 11, pp. 21-32, 2017.
[17] Zhao, M., Wu, G., Zhu, D., Jiang, L. and Dou, Z., “Effects of thermal cycling on mechanical properties of AlNp/Al composite,” Materials Letters, Vol. 58, No. 12-13, pp. 1899-1902, 2004.
[18] Najafi, M., Ansari, R. and Darvizeh, A., “Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites,” Polymer Composites, 2018. doi.org/10.1002/pc.25134.
[19] Ray, B., “Study of the influence of thermal shock on interfacial damage in thermosetting matrix aramid fiber composites,” Materials Science Letters, Vol. 22, No. 3, pp. 201-202, 2003.
[20] Eslami-Farsani, R., Khalili, S. M. R. and Najafi, M., “Effect of thermal cycling on hardness and impact properties of polymer composites reinforced by basalt and carbon fibers,” Thermal Stresses, Vol. 36, No. 7, pp. 684-698, 2013.
[21] Lawcock, G., Ye, L., Mai, Y. W. and Sun, C.-T. J. C. S., “The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fiber-reinforced metal laminates,” Composites Science and Technology, Vol. 57, No. 1, pp. 35-45, 1997.
[22] ASTM D 790, “Standard Test Methods for Flexural Properties of Un-reinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standard, 2000.
[23] Haijuan, K., Hui, S., Jin, C., Haiquan, D., Xiaoma, D., Mengmeng, Q., Muhuo, Y. and Youfeng, Z. J. P. C., “Improvement of adhesion of kevlar fabrics to epoxy by surface modification with acetic anhydride in supercritical carbon dioxide,” Polymer Composites, Vol. 40, No. 1, pp. 920-927, 2019.
[24] Sandesh, U. K. S. and Manujesh, B.J, “Mechanical Characterization of Kevlar/Glass Hybrid Reinforced Polymer composite laminates,” International Advanced Research Journal in Science, Vol. 3, No. 12, pp. 203-220, 2016.