نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو کارشناسی ارشد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

2 استاد، مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

3 استادیار، مهندسی مکانیک، دانشگاه صنعتی اراک، اراک

10.22068/jstc.2019.112518.1577

چکیده

در این تحقیق به بررسی چقرمگی شکست مود I در کامپوزیت‎های ساخته شده از الیاف شیشه نوع E با بافت تک جهته و رزین وینیل‌استر در معرض اسید سولفوریک پرداخته شده است. نمونه‌های مورد استفاده به روش لایه‌چینی دستی با چیدمان لایه‌های [0]_18 ساخته شدند. به منظور اعمال شرایط محیطی نمونه‌های ساخته شده در ابعاد بیان‌شده در استاندارد، در بازه‌های زمانی 0، 1، 2، 5 و 10 هفته در محلول 20% وزنی تهیه شده از اسید سولفوریک 98% با دمای آزمایشگاه غوطه‌ور شدند. سپس آزمون شکست با استفاده از تیر یک‌سر گیر‌دار دو لبه بر روی نمونه‌ها به منظور بررسی روند تغییرات چقرمگی شکست بین لایه‌ای شروع و پایا در بازه‌های زمانی مختلف صورت گرفته است. نتایج آزمایشگاهی نشان‌دهنده کاهش چقرمگی شکست پایا در نمونه‌ها با اعمال شرایط محیطی بودند، درحالی که روند تغییر چقرمگی شکست شروع رشد ترک در 5 هفته اول به‌صورت افزایشی بوده و پس از آن در هفته دهم با کاهش قابل توجهی همراه بوده است. علاوه‌بر ‌این، در این پژوهش مشاهده شد که مقدار نیروی شروع رشد ترک با قرارگیری نمونه در معرض شرایط محیطی کاهش پیدا کرده است.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental investigation of mode I delamination growth in unidirectional E-glass/vinyl ester composites on acid aging

نویسندگان [English]

  • Sina Farahifar 1
  • Mahmood M. Shokrieh 2
  • Mazaher Salamat-Talab 3

1 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

2 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.

3 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran.

چکیده [English]

In the present investigation, the mode I fracture toughness of unidirectional E-glass/vinyl ester composites subjected to sulfuric acid was studied. Specimens were manufactured using the hand lay-up method with the [0]_18 stacking sequence according to standard size. Specimens were exposed to 20 wt.% sulfuric acid (with 98% purity) at the laboratory temperature for 0, 1, 2, 5 and 10 weeks. Subsequent to conditioning for the aforesaid period of times, samples were dried and according to the standard, the double cantilever beam tests were performed to study variations of the initiation and propagation fracture toughness. Results show a reduction in the propagation fracture toughness after conditioning, although the variation of the initiation fracture toughness at the first 5 weeks was increasingly and after that at the 10th week had a significant reduction. Moreover, it was observed that the amount of the crack initiation force of samples was decreased after the conditioning.

کلیدواژه‌ها [English]

  • Acid aging
  • glass/vinyl ester
  • unidirectional composites
  • initiation and propagation
  • mode I fracture toughness
  • double cantilever beam
[1]Pagano, N.J. and Schoeppner, G.A., “Delamination of Polymer Matrix Composites : Problems and Assessment,” . In: Comprehensive Composite Materials. pp. 433–528, 2000.
[2]Piggott, M.R., “Mechanical Aging,” . In: Wiley Encyclopedia of Composites. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012.
[3]Pochiraju, K.V. Tandon, G.P. and Schoeppner, G.A., “Long-Term Durability of Polymeric Matrix Composites,” Springer US, Boston, MA, 2012.
[4]Martin, R., “Ageing of Composites,” Elsevier Science, 2008.
[5]Zenasni, R. Bachir, A.S. Garcia, M.A. Argüelles, A. and Viña, J., “Hygrothermal Aging Effect on the Interlaminar Fracture of Woven Fabric Fibre/ PEI Composite Material,” Sci. Eng. Compos. Mater., Vol. 11, No. 4, pp. 225–230, 2004.
[6]Zenasni, R. Bachir, A.S. Viña, I. Arguelles, A. and Viña, J., “Effect of Hygrothermomechanical Aging on the Interlaminar Fracture Behavior of Woven Fabric Fiber/PEI Composite Materials,” J. Thermoplast. Compos. Mater., Vol. 19, No. 4, pp. 385–398, 2006.
[7]Selzer, R. and Friedrich, K., “Influence of Water Up-Take on Interlaminar Fracture Properties of Carbon Fibre-Reinforced Polymer Composites,” J. Mater. Sci., Vol. 30, No. 2, pp. 334–338, 1995.
[8]Zhao, Y. Liu, W. Seah, L.K. and Chai, G.B., “Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment,” Compos. Part B Eng., Vol. 106, No. 20, pp. 332–343, 2016.
[9]Scida, D. Aboura, Z. and Benzeggagh, M.L., “The Effect of Ageing on the Damage Events in Woven-Fibre Composite Materials under Different Loading Conditions,” Compos. Sci. Technol., Vol. 62, No. 4, pp. 551–557, 2002.
[10]Alessi, S. Pitarresi, G. and Spadaro, G., “Effect of Hydrothermal Ageing on the Thermal and Delamination Fracture Behaviour of CFRP Composites,” Compos. Part B Eng., Vol. 67, pp. 145–153, 2014.
[11]Srivastava, V.K. and Hogg, P.J., “Moisture Effects on the Toughness, Mode-I and Mode-II of Particles Filled Quasi-Isotropic Glass-Fibre Reinforced Polyester Resin Composites,” J. Mater. Sci., Vol. 33, No. 5, pp. 1129–1136, 1998.
[12]Nash, N.H. Young, T.M. and Stanley, W.F., “The Reversibility of Mode-I and -II Interlaminar Fracture Toughness after Hydrothermal Aging of Carbon/Benzoxazine Composites with a Thermoplastic Toughening Interlayer,” Compos. Struct., Vol. 152, pp. 558–567, 2016.
[13]Almansour, F.A. Dhakal, H.N. and Zhang, Z.Y., “Effect of Water Absorption on Mode I Interlaminar Fracture Toughness of Flax/Basalt Reinforced Vinyl Ester Hybrid Composites,” Compos. Struct., Vol. 168, pp. 813–825, 2017.
[14]Kootsookos, A. and Mouritz, A.P., “Seawater Durability of Glass- and Carbon-Polymer Composites,” Compos. Sci. Technol., Vol. 64, No. 10–11, pp. 1503–1511, 2004.
[15]Amini, M. and Khavandi, A., “Evaluation of the water absorption content effect on the dielectric properties and tensile strength of polymer composites,” J. Sci. Technol. Compos., 2019.
[16]Cheng, X. Zhang, Q. Zhang, J. Guo, X. and Niu, Z., “Parameters prediction of cohesive zone model for simulating composite/adhesive delamination in hygrothermal environments,” Compos. Part B Eng., Vol. 166, No. January, pp. 710–721, 2019.
[17]Viana, G. Costa, M. Banea, M.D. and da Silva, L.F.M., “Water Diffusion in Double Cantilever Beam Adhesive Joints,” Lat. Am. J. Solids Struct., Vol. 14, No. 2, pp. 188–201, 2017.
[18]Xu, D. Liu, P.F. Li, J.G. and Chen, Z.P., “Damage mode identification of adhesive composite joints under hygrothermal environment using acoustic emission and machine learning,” Compos. Struct., Vol. 211, No. July 2018, pp. 351–363, 2019.
[19]Mansouri, L. Djebbar, A. Khatir, S. and Abdel Wahab, M., “Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites,” Compos. Struct., Vol. 207, pp. 816–825, 2019.
[20]Resin Selection Guide For Corrosion Resistant FRP Applications,, 2007.
[21]Nuplex ® composites, Technical Data Sheet.
[22]ASTM International, Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents,, 2014.
[23]ASTM International, Standard Practice for Conditioning Plastics for Testing,, 2013.
[24]ASTM International, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional, ASTM Standard D5528-94a,, 2013.
[25]Huang, G. and Sun, H., “Effect of Water Absorption on the Mechanical Properties of Glass/Polyester Composites,” Mater. Des., Vol. 28, No. 5, pp. 1647–1650, 2007.
[26]Gu, H. and Hongxia, S., “Delamination Behaviour of Glass/Polyester Composites after Water Absorption,” Mater. Des., Vol. 29, No. 1, pp. 262–264, 2008.
[27]Fraga, A.N. Alvarez, V.A. Vazquez, A. and de la Osa, O., “Relationship between Dynamic Mechanical Properties and Water Absorption of Unsaturated Polyester and Vinyl Ester Glass Fiber Composites,” J. Compos. Mater., Vol. 37, No. 17, pp. 1553–1574, 2003.
[28]Maxwell, A.S. Broughton, W.R. Dean, G. and Sims, G.D., Review of Accelerated Ageing Methods and Lifetime Prediction Techniques for Polymeric Materials,, 2005.