نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک، دانشگاه تبریز، تبریز

2 دانشیار، مهندسی مکانیک، دانشگاه تبریز، تبریز

3 استاد، مهندسی مکانیک، دانشگاه تبریز، تهران.

4 استاد، مهندسی مکانیک، دانشگاه امیرکبیر، تهران

10.22068/jstc.2019.105343.1528

چکیده

در این پژوهش به مطالعه تجربی اثر جهت‌گیری عامل خودترمیم آوندی بر استحکام کششی و بازدهی ترمیم در کامپوزیت‌ اپوکسی-الیاف شیشه پرداخته شده است. ابتدا الیاف شیشه توخالی (با قطر خارجی 450±10 میکرومتر و کسر تهینگی 50%-55%) با استفاده از یک دستگاه اکسترودر تولید شد. سپس، الیاف شیشه توخالی با اجزای خود ترمیم پر شد و به عنوان خودترمیم آوندی در چند لایه کامپوزیتی استفاده شد. جهت‌گیری آوند‌های خودترمیم در سه سطح 0، 45 و 90 درجه نسبت به راستای الیاف شیشه تقویت‌کننده، و فاصله آوندها از یکدیگر 200 میکرومتر در نظر گرفته شد. نمونه‌های شاهد، آسیب دیده و ترمیم شده تحت آزمون کشش قرار گرفتند و بازدهی ترمیم مطالعه شد. نتایج آزمون کشش نشان داد که وجود آوندهای خالی در زوایای 0، 45 و 90 درجه در ساختار کامپوزیت سبب به ترتیب 17%، 14% و 21% کاهش در استحکام کششی می شود. آسیب در نمونه‌های کشش با کرنش 1.2% ایجاد شد و سپس فرایند خودترمیم در دمای ℃ 70 و مدت زمان 48 ساعت انجام شد. در مرحله بعد، بازدهی ترمیم با استفاده از آزمون کشش اندازه‌گیری شد. نتایج آزمون های کشش و بازدهی ترمیم نشان داد که بهترین جهت‌گیری برای چینش آوند‌های حاوی عامل خودترمیم، زاویه 45 درجه نسبت به راستای الیاف شیشه تقویت‌کننده می‌باشد، بطوریکه در این حالت بازدهی ترمیم 42% است. شکل شناسی آوندهای شکسته شده و محل های ترمیم شده توسط میکروسکوپ الکترونی روبشی مطالعه شد.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Vascular Self-Healing Orientation on Healing Efficiency of Epoxy/Glass Fiber Composite

نویسندگان [English]

  • Alireza Adli 1
  • Karim Shelesh-Nezhad 2
  • Mohammad Reza Khoshravan Azar 3
  • Mohammad Mohammadi-Aghdam 4

1 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.

2 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.

3 Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran..

4 Faculty of Mechanical Engineering, Amirkabir University, Tehran, Iran.

چکیده [English]

In this study, the effect of vascular self-healing orientation on tensile strength and healing efficiency of epoxy-glass composite has been experimentally studied. Hollow glass fiber (HGF) of 450±10 μm diameter and 50%-55% hollowness was produced by using an extruder. Following, the HGFs were filled with healing components, and subsequently employed as vascular healing system in composite laminate. The orientations of HGFs were selected at three levels of 0, 45 and 90°. The distance of HGFs was kept at 200 μm. The virgin, damaged and healed specimens were characterized in term of tensile behavior and subsequently the healing efficiency was studied. The results of tensile tests indicated that the presence of blank HGFs in composite lowered the tensile strength as high as 17, 14 and 21% for HGFs angles of 0, 45 and 90°, respectively. As a damage, a strain of 1.2% was initiated in the tensile specimen and afterward the self-healing process was accomplished at temperature of 70 ˚C for a time period of 48 hours. Subsequently, the healing efficiency was measured by tensile testing. The results indicated that the best orientation of the filled HGFs was 45°, where the healing efficiency was equal to 42%. The morphology of fractured HGFs and healed zones was studied by employing scanning electron microscopy.

کلیدواژه‌ها [English]

  • "Self-healing composite
  • " " Vascular self-healing
  • " " Tensile properties
  • " " Epoxy
  • " " Glass fiber"
[1]Sottos, N. White, S. and Bond, I., “Introduction: Self-Healing Polymers and Composites”, Journal of The Royal Society Interface, Vol. 4, pp. 347-353, 2007.
[2]Trask, R.S. Williams, H.R and Bond, I.P., “Self-Healing Polymer Composites: Mimicking Nature to Enhance Performance”, Bioinspiration & Biomimetics, Vol. 2, pp. 1-9, 2007.
[3]Wang, Y. Pham, T.D. and Ji, C., “Self-healing composites: A review”, Cogent Engineering, Vol. 2, pp. 107-121, 2015.
[4]Kanua, N.J. Gupta, E. Vates, U.K. and Singh, G.K., “Self-healing composites: A state-of-the-art review”, Composites Part A, Vol 121, pp. 474–486, 2019.
[5]Dry, C., “Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibers into Cement Matrices”, Smart Materials and Structures, Vol. 3, pp. 118-123, 1994.
[6]Dry, C., “Procedures Developed for Self-Repair of Polymeric Matrix Composite Materials”, Composite Structures, Vol. 35, pp. 263–269, 1996.
[7]White, S.R. Sottos, N.R. Geubelle, P.H. Moore, J.S. Kessler, M.R. Sriram, S.R. Brown, E.N. and Viswanathan, S., “Autonomic Healing of Polymer Composites, Nature”, Vol. 409, pp. 794–797, 2001.
[8]Brown, E.N. Sottos, N.R. and White, S.R., “Fracture Testing of a Self-Healing Polymer Composite”, Experimental Mechanics, Vol. 42, pp. 372-379, 2002.
[9]Jericho, L.M. Scott, R. White, S.R. and Sottos, N.R., “A Self-Sealing Fiber-Reinforced Composite”, Journal of Composite Materials, 2010, Vol. 44, pp. 1-13, 2010.
[10]Kessler, M. R. and White, S. R., “Self-Activated Healing of Delamination Damage in Woven Composites”, Composites Part A, Vol. 32, pp. 683-699, 2001.
[11]Kessler, M. R. Sottos, N. R. and White, S. R., “Self-Healing Structural Composite Materials”, Composites Part A, Vol. 34A, pp. 743–753, 2003.
[12]Hayes, S.A. Jones, F.R. Marshiya, K. and Zhang, W., “A self-healing thermosetting composite material”, Composites Part A, Vol. 38, pp. 1116–1120, 2007.
[13]Belay, S.M. Leader.C.B. Hawyes V.J. Humberstone.L. and Curits P.T., “A Smart Repair System for Polymer Matrix Composite”, Composite Part A, Vol. 32, pp. 1767-1776, 2001.
[14]Pang, J. W. C. and Bond, I. P., “Bleeding Composites-Damage Detection and Self-Repair Using a Biomimetic Approach”, Composites Part A, Vol. 36A, pp. 183–188, 2005.
[15]Pang, J. W. C. and Bond, I. P., “A Hollow Fibre Reinforced Polymer Composite Encompassing Self-Healing and Enhanced Damage Visibility”, Composites Science and Technology, Vol. 65, pp. 1791– 1799, 2005.
[16]Trask R. S. and Bond I. P., “Biomimetic Self-Healing of Advanced Composite Structures Using Hollow Glass Fibres”, Smart Materials and Structures, Vol. 15, pp. 704-710. 2006.
[17]Coppola, A.M. Thakre, P.R. Sottos, N.R. and White, S.R., “Tensile properties and damage evolution in vascular 3D woven glass/epoxy composites”, Composites Part A, Vol. 59, pp. 9-17, 2014.
[18]Williams, G. Trask, R. and Bond, I., “A Self-healing Carbon Fiber Reinforced Polymer for Aerospace Applications”, Composites Part A, Vol. 38, pp. 1525-1532, 2007.
[19]Zainuddin, S. Arefin, T. Fahim, A. Hosur, M. V. Tyson, J. D. Kumar, A. Trovillion, J. and Jeelani, S., “Recovery and Improvement in Low-Velocity Impact Properties of E-Glass/Epoxy Composites Through Novel Self-Healing Technique”, Composite Structures, Vol. 108, pp. 277-286, 2014.
[20]Nademi, M. Mozaffari, A. and Farrokhabadi, A., “A New Self Healing Method in Composite Laminates Using the HollowGlass”, Key Engineering Materials, Vol. 471, pp. 548-551, 2011.
[21]Eslami-Farsani, R. Sari, A. and Khosravi, H., “Mechanical properties of carbon fibers/epoxy composite containing anhydride self-healing material under transverse loading”, In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 285-290, 2016.
[22]Abbasnia, Sh. Eslami-Farsani, R. and Khosravi, H. “Mechanical performance of self-healing fiber-metal laminates under transverse loading”, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 02, pp. 185-190, 2018.
[23]Eslami-Farsani, R. Mohabbati, F. and Khosravi, H., “Experimental study of tensile behavior of self-healing fiber-metal laminates composites with chopped hollow glass fibers”, In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 399-404, 2018.
[24]Mohammadi, M. A. Babolhavaeji, M. Eslami-Farsani, R. and Zamani, M. R., “Effect of time on healing behavior of microvascular channels based self-healing E-glass fibers/epoxy composite under flexural and tensile loadings condition”, In Persian, Journal of Science and Technology of Composites, In-Press.
[25]Eslami-Farsani, R. Khalili, S. M. R.  Khademoltoliati, A. and Saeedi, A., “Tensile and creep behavior of microvascular based self-healing composites: Experimental study”, Mechanics of Advanced Materials and Structures, 2019, DOI: 10.1080/15376494.1567882. In-Press.
[26]Saurabh, S. and Deepak, J., “The Effect of Healing Time on the Self-Healing Efficiency of Carbon Fiber Reinforced Polymer Composites”, Materials Today: Proceedings, Vol. 4, pp. 2903–2909, 2017.
[27]Khalili, S. M. R. Zarei, M. and Eslami-Farsani, R. , “Experimental study of the mechanical behavior of self-healing polymer composite under heating cycles”, In Persian, Journal of Science and Technology of Composites, In-Press.
[28]Norris, C. J. Bond, I. P. and Trask, R. S., “Interactions between Propagating Cracks and Bioinspired Self-Healing Vascules Embedded in Glass Fiber Reinforced Composites”, Composites Science and Technology, Vol. 71, pp. 847–853, 2011.
[29]Norris, C. J. Bond, I. P. and Trask, R. S., “Healing of Low-Velocity Impact Damage in Vascularised Composites”, Composites Part A, Vol. 44A, pp. 78–85, 2013.