نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی مکانیک، دانشگاه حکیم سبزواری، سبزوار

2 استادیار، مهندسی مکانیک، دانشگاه حکیم سبزواری، سبزوار، سبزوار

10.22068/jstc.2019.102665.1509

چکیده

استفاده از z-پین‌ها علیرغم وزن کم و اندازه‌ی کوچک، به منظور کاهش معایب کامپوزیت‌ها و سازه‌های ساندویچی، افزایش مقاومت و استحکام آنها و همچنین جلوگیری از رشد ترک، گسترش فراوانی پیدا کرده است. در این مقاله با استفاده از روش المان‌محدود، رفتار سازه‌های ساندویچی چند منظوره با هسته z-پین در نرخ کرنش‌های متوسط (بین 164 تا 327 بر ثانیه)، تحت آزمایش میله فشاری هاپکینسون مورد بررسی قرار گرفته شده‌است. اثرات نرخ کرنش و رفتار مکانیکی سازه ساندویچی چند منظوره تحت بارگذاری دینامیکی بررسی و با نتایج تجربی موجود مقایسه شده است که توافق خوبی بین نتایج وجود دارد. همچنین به بررسی پارامترهای موثر در جهت افزایش مقاومت مکانیکی سازه‌های ساندویچی با هسته‌های z-پین، مانند پرداخته شده است. این پارامترها شامل زاویه قرار گیری z-پین‌ها نسبت به افق، جنس ماده تشکیل‌دهنده و بررسی تغییر قطر z-پین‌ها می‌باشد. به طور خلاصه نتایج نشان می‌دهد که این سه پارامتر تاثیر بسزایی در افزایش تنش جریان و افزایش مقاومت نهایی سازه خواهند داشت. در انتها به مقایسه خواص مکانیکی سازه ساندویچی با هسته z-پین و هسته لانه‌زنبوری شبیه سازی شده پرداخته شده است. نتایج نشان می‌دهد که تحت شرایط وزنی و حجمی یکسان هسته، میزان مقاومت فشاری نهایی هسته ساخته شده از z-پین‌ از هسته لانه زنبوری کمتر ولی انعطاف پذیری آن بیشتر می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Mechanical properties of multifunctional composite structures with z-pin core using numerical simulation of Hopkinson pressure bar test device

نویسندگان [English]

  • Alireza Toluei 1
  • Ehsan Etemadi 2

1 Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran.

2 Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran.

چکیده [English]

The z-pins in spite of their small sizes and small weights, but they have been expanded to reduce the disadvantages of composites and sandwich panels, increase their resistances and strengths, and prevent crack growth. In this paper, using a finite element method, the behavior of multi-functional sandwich panels with z-pin cores in average strain rates (between 164-327 1/s) under Split Hopkinson pressure bar (SHPB) test have been investigated. The effects of strain rate and mechanical behavior of multifunctional sandwich panel subjected to dynamic loading were investigated and the results compared with the published experimental tests. Good agreements were found between them. Also, effective parameters such as embedding angle of z-pins, their materials and their diameters were investigated. In conclusion, the results show that the foresaid parameters have effective roles in increasing flow stress and ultimate strength of multifunctional sandwich panels. Furthermore, the mechanical properties of sandwich panel with z-pin and honeycomb were compared. The results show that in the same weight and Volume core condition, the ultimate strength and flexibility of z-pins are respectfully smaller and larger than honeycomb cores.

کلیدواژه‌ها [English]

  • Strain rate
  • Multi-functional sandwich panel
  • z-pin
  • Impact
  • Finite element method
[1]Hohe. J. and Freitas. S. R, G.A., Fusco. T, Campbell. T, “Z-fiber TechNology and Products for Enhancing Composite Design,” Profesional Psychology. Proceedings of the 83rd Meeting of the AGARD SMP Conference on Bolted/Bonded Joints in Polymeric Composites, 2-3 Sept., p. 17, 1987.
[2]Chang. P, “The Mechanical Properties and Failure Mechanisms of z-pin ned Composites,” No. June, 2006.
[3]Lim. A. S, An. Q, Chou. T.-W, and Thostenson. E. T, “Mechanical and electrical response of carbon naNotube-based fabric composites to Hopkinson bar loading,” Composites Science and TechNology, Vol. 71, No. 5, P. 616–621, 2011.
[4]Hohe. J, “Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace aplications,” Materials and Design, Vol. 39, P. 20–32, 2012.
[5]Nanayakkara. A, Feih. S, and Mouritz. A. P, “Experimental impact damage study of a z-pinned foam core sandwich composite,” Journal of Sandwich Structures and Materials, Vol. 14, No. 4, P. 469–486, 2012.
[6]Cartié.I. K. P, “Delamination behaviour of z-pinned laminates.” 1999.
[7]Vaidya. U. K, Ulven. C, and Mathew. B, “Design and processing of sandwich composites with multi-functional features,” Society of Manufacturing Engineers, 2000.
[8]Vaidya. U. K, Abraham. A, and Bhide. S, “Affordable processing of thick section and integral multi-functional composites,” Composites - Part A: aplied Science and Manufacturing, Vol. 32, No. 8, P. 1133–1142, 2001.
[9]Hosur. M, Abdullah. M, and Jeelani. S, “Dynamic compression behavior of integrated core sandwich composites,” Materials Science and Engineering A, Vol. 445–446, No. September 2006, P. 54–64, 2007.
[10]Mouritz. A, “Review of z-pinned composite laminates,” Composites Part A: APlied Science and Manufacturing, Vol. 38, No. 12, P. 2383–2397, 2007.
[11]Jordan. L, “Multifunctional particulate composites for structural aplications  ( preprint ) Munitions Directorate Georgia Institute of TechNology This paper will be presented at the 2008 SEM XI International Congress and Exposition on Experimental and APlied Mechani,” No. March, 2008.
[12]Vaidya. A. S, Vaidya. U. K, and Uddin. N, “Impact response of three-dimensional multifunctional sandwich composite,” Materials Science and Engineering A, Vol. 472, No. 1–2, P. 52–58, 2008.
[13]Lin. Y and SodaNo. H. A, “Electromechanical characterization of a active structural fiber lamina for multifunctional composites,” Composites Science and TechNology, Vol. 69, No. 11–12, P. 1825–1830, 2009.
[14]Du. L and Jiao. G, “Indentation study of z-pin reinforced polymer foam core sandwich structures,” Composites Part A: aplied Science and Manufacturing, Vol. 40, No. 6–7, P. 822–829, 2009.
[15]Buitrago. B. L, Santiuste. C, Sánchez-Sáez. S, Barbero. E, and Navarro. C, “Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact,” Composite Structures, Vol. 92, No. 9, P. 2090–2096, 2010.
[16]Griskevicius. P, Zeleniakiene. D, and Leisis.V, “Experimental and Numerical Study of IMPact Energy Absorption of Safety Important Honeycomb Core Sandwich Structures,” Materials Science (Medžiagotyra), Vol. 16, No. 2, P. 119–123, 2010.
[17]Chang. H, Binner. J, Higginson. R, Myers. P, Webb. P, and King. G, “High strain rate characteristics of 3-3 metal-ceramic interpenetrating composites,” Materials Science and Engineering A, Vol. 528, No. 6, P. 2239–2245, 2011.
[18]Zhang. B, Allegri. G, Yasaee. M, Hallett. S. R. I. K, “On the delamination self-sensing function of z-pinned composite laminates,” Composites Science and TechNology, Vol. 128, P. 138–146, 2016.
[19]Golshan. N, Hossein. M, Omid. P, and Asl. N, “Numerical Investigation of the Parameters Affecting on the Composite Tubes Response under Axial Impact,” In Persian, Journal of Science and TechNology of composites, 2016.
[20]Malekzadeh-fard. K, Azarnia. A, and Zolghadr. N, “Analytical modeling to predict dynamic response of Fiber-Metal Laminated Panel subjected to low velocity impact,” In Persian, Journal of Science and TechNology of composites, Vol. 5, No. 3, P. 331–342, 2018.
[21]Chaparian. Y, Kabiri. A, Arzani. H, and Gerami. G, “Experimental and numerical investigation of high velocity impact resistance in fiber metal laminates,” In Persian, Journal of Science and TechNology of composites, Vol. 5, No. 1, P. 99–108, 2018.
[22]Safarabadi. M, Ashkani. P, and Ganjiani. M, “Finite element simulation of high velocity iMPact on polymer composite plates,” In Persian, Journal of Science and TechNology of composites, Vol. 5, No. 2, P. 157–168.
[23]Khodaei. M, Farahani. M, and Haghighi-yazdi. M, “Numerical investigation of the effect of material strain rate dependent properties on high velocity impact behavior and ballistic limit velocity of honeycomb structures,” In Persian, Journal of Science and TechNology of composites, Vol. 5, No. 4, P. 511–520, 2018.
[24]Ghaderi. A, Ghasemi. A, and Tooski. M, “An experimental investigation of quasi-static indentation on a composite sandwich panel made of basalt fiber using naNo-graphene,” In Persian, Journal of Science and TechNology of composites, 2019.
[25]Vaidya. U. K, Nelson. S, Sinn. B, and Mathew. B, “Processing and high strain rate iMPact response of multi-functional sandwich composites,” Composite Structures, Vol. 52, No. 34, P. 429–440, 2001.
[26]Hosur. M, Adya. M, Jeelani. S, Vaidya. U. K, and Dutta. P. K, “Experimental Studies on the High Strain Rate Compression Response of Woven Graphite/Epoxy Composites at Room and Elevated Temperatures,” Journal of Reinforced Plastics and Composites, Vol. 23, No. 5, P. 491–514, 2004.
[27]Gilat. A and Cheng. C.-S, “Torsional Split Hopkinson Bar Tests at Strain Rates above 10 4 s -1,” Experimental Mechanics, Vol. 40, No. 1, P. 54–59, 2000.
[28]Nemat-Nasser. S, “Introduction to High Strain Rate Testing,” Materials Park, OH, ASM International, 2000., P. 427–428, 2000.
[29]Lang. S. M, Design of a split Hopkinson bar aParatus for use with fiber reinforced composite materials. Utah State University, 2012.
[30]Etemadi. E, Zamani. J, V Mousavi. M, and Francesconi. A, “Design, Set up and testing of split hopkinson bar to evaluate flow stress in coPer at high strain rates,” Journal of energetic materials, Vol. 9, No. 2, P. 3–13, 2014.
[31]Etemadi. E, Zamani Ashani. J, and Mousavi. MV, “High Strain Rate and Plastic Deformation Response of OFHC CoPer by Finite Element Method,” Advances in Mechanical Science, 2014.
[32]Safikhani. M and Etemadi. E, “International Journal of Mechanical Sciences Three dimensional modeling of warp and woof periodic auxetic cellular structure,” International Journal of Mechanical Sciences, Vol. 136, No.1, P. 475–481, 2018.
[33]Safikhani. M and Etemadi. E, “Analysis of effective parameters of auxetic composite structure made with multilayer orthogonal reinforcement by finite element method,” In Persian, Modares Mechanical Engineering, Vol. 17, No. 4, P. 247–254, 2017.
[34]Karkalos. N and Markopoulos. A, "Determination of Johnson-Cook material model parameters by an optimization approach using the fireworks algorithm," Procedia Manufacturing, Vol. 22, P 107-113 ,2018.
[35]Louis C. Dorworth. G. M. M , Gardiner. Ginger L, Ed., Essentials of Advanced Composite Fabrication & Repair, 1st ed. Aviation SuPlies & Academics, 2009.
[36]Zhang. X, Hounslow. L, and Grassi.M, “Improvement of low-velocity impact and compression-after-iMPact performance by z-fibre pinning,” Composites Science and TechNology, Vol. 66, No. 15. P. 2785–2794, 2006.
[37]Rugg. K, Cox. B, and Massabò. R, “Mixed mode delamination of polymer composite laminates reinforced through the thickness by z-fibers,” Composites - Part A: Aplied Science and Manufacturing, Vol. 33, No. 2. P. 177–190, 2002.