نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار ، مهندسی و علم مواد، دانشکده مهندسی و علم مواد دانشگاه صنعتی خواجه نصیرالدین طوسی ، تهران.

2 دانشجوی دکترا، مهندسی و علم مواد، دانشکده مهندسی و علم مواد دانشگاه صنعتی خواجه نصیرالدین طوسی ، تهرا ن.

10.22068/jstc.2019.108618.1554

چکیده

یکی از بزرگ ترین مشکلات قطعات کامپوزیتی در حین کار، ایجاد و رشد میکروترک در آن ها می باشد. رشد این میکروترک ها و به هم پیوستن آن ها می تواند باعث شکست فاجعه بار سازه کامپوزیتی شود. برای حل این مشکل، محققان به خصوص در طی سال های گذشته تلاش بسیاری کرده اند تا با ساخت مواد خودترمیم شونده، ترک های ایجاد شده را ترمیم کنند و مانع شکست کل قطعه شوند. ماده خودترمیم شونده، ماده ای است که باعث ترمیم میکروترک به صورت خودبه خودی و بدون هیچ گونه دخالت خارجی می شود. براساس روش های خودترمیمی، این مواد هوشمند به دو دسته ی بزرگ ذاتی و غیرذاتی تقسیم بندی می شوند. در سیستم ترمیم شوندگی ذاتی، ترمیم به صورت واکنش های فیزیکی، شیمیایی و ابرمولکولی انجام می شود. در مقابل در سیستم غیرذاتی، عامل ترمیمی در داخل محفظه ای نظیر الیاف توخالی، شبکه میکروآوندی و میکروکپسول ذخیره می شود. تحقیق حاضر سعی دارد تا پیشرفت های اخیر در زمینه انواع سیستم های ترمیم غیرذاتی را با تاکید بر بکارگیری آن ها در کامپوزیت های زمینه پلیمری به خصوص در طی سال های 2009 تاکنون مورد بررسی قرار دهد. در این راستا و در این کار مروری، ضرورت ترمیم کامپوزیت، مفهوم خودترمیم شوندگی، انواع روش های ترمیم غیرذاتی، ارزیابی عملکرد ترمیم در آزمون های مکانیکی مختلف، و همچنین گزارش های آماری و سیر تکاملی مرتبط با خودترمیم شوندگی ارائه شده اند.

کلیدواژه‌ها

عنوان مقاله [English]

A review on healing and mechanical behaviors of self-healable polymer matrix composites by extrinsic healing methods

نویسندگان [English]

  • Reza Eslami-Farsani 1
  • Hossein Ebrahimnezhad-Khaljiri 2

1 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran..

2 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.

چکیده [English]

One of the major problems of composite parts during their services is the creating and growing microcracks into them. The growth of microcracks and incorporation of them together, can lead to the catastrophic failure of composite structure. To solve this problem, the researchers especially during the last years ago have made many efforts to fabricate self-healable materials to heal the microcracks and prevent the failure of whole part. The self-healable matter is the substance which is caused to heal the microcracks automatically and without any external intervention. According to self-healing methods, these smart materials are divided into two major group of intrinsic and extrinsic. In intrinsic healing system, the healing was carried out by physical, chemical and super molecular interactions. In contrast in extrinsic healing system, the healing agent is stored into the container such as hollow fibers, micro vascular and microcapsule. The present work tries to investigate the most recent breakthroughs in the various extrinsic healing systems with emphasis on using them into the polymeric matrix composites, especially in period time of 2009 up to now. In this regard and in the review work, the necessity composite healing, self-healing concept, different extrinsic self-healing system, and healing performance evaluation in the different mechanical exams, as well as the related statistical reports and development to the self-healing are exhibited.

کلیدواژه‌ها [English]

  • Self- healable materials
  • Polymer matrix composite
  • Mechanical properties recovery
  • Extrinsic healing

[1]       Khalili, S.M.R. Eslami Farsani, R. Dastmard, A. and Saeedi, A., “Experimental Investigation of Creep Behavior in Phenolic Based Polymer Composites” In Persian, Journal of Science and Technology of Composite, Vol. 1, No. 2, pp. 37-42, 2015.

[2]      Bahari-Sambran, F. Eslami-Farsani, R. and Ebrahimnezhad-Khaljiri, H., “Experimental Investigation of Flexural Behavior of Basalt Fibers/Epoxy-Aluminum Laminate Composites Containing Nanoclay Particles,” In Persian, Iranian Journal of Manufacturing Engineering, Vol. 5, No. 1, pp. 45-54, 2018.

[3]      Malekinejad Bahabadi, H. Farrokhabadi, A. Khatibi, M. M. and Rahmani, R., “The Influence of Skin/Core Debonding Effects on the Natural Frequencies of Composite Sandwich Structures Using Experimental and Numerical Modal Analysis,” In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 1, pp. 91-98, 2018.

[4]      Ebrahimnezhad Khaljiri, H. Eslami Farsani, R., “Investigation of Tensile and Burning Rate Behavior of Hybrid Glass-Semicarbon Fibers/Epoxy Composite,” In Persian, Journal of Mechanical Engineering (Tabriz University), Vol. 78, No. 1, pp. 29-36, 2017.

[5]      Khosravi, H. Eslami-Farsani, R. and Ebrahimnezhad-Khaljiri, H., “An Experimental Study on Mechanical Properties of Epoxy/Basalt/Carbon Nanotube Composites Under Tensile and Flexural Loadings,” In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 187-194, 2016.

[6]      Zhang, M. Q. and Rong, M. Z., “Self-Healing Polymers and Polymer Composites,” First ed., John Wiley & Sons, Hoboken, pp. 1-5, 2011.

[7]      Wool, R. P., “Self-Healing Aaterials: a Review,” Soft Matter, Vol. 4, No. 3, pp. 400-418, 2008.

[8]      Dry, C. and Sottos, R., “Passive Smart Self-Repair in Polymer Matrix Composite Materials,” North American Conference on Smart Structures and Materials, Society of Photo-Optical Instrumentation Engineers (SPIE), Proc. SPIE 1916, Albuquerque, 1993.

[9]      White, S. R. Sottos, N. R. Geubelle, P. H. Moore, J. S. Kessler, M. R. Sriram, S. R. Brown, E. N. and Viswanathan, S., “Autonomic Healing of Polymer Composites,” Nature, Vol. 409, pp. 794-797, 2001.

[10]    Blaiszik, B. J. Kramer, S. L. B. Olugebefola, S. C. Moore, J. S. Sottos, N. R. and White, S. R., “Self-Healing Polymers and Composites,” Annual Review of Materials Research, Vol. 40, No. 1, pp. 179-211, 2010.

[11]    Gibson, R. F., “A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures,” Composite Structures, Vol. 92, No. 12, pp. 2793-2810, 2010.

[12]    Tanasa, F. and Zanoaga, M., “Self-Healing Materials – From Design To Specific Applications,” International Conference of Scientific Paper of AFASES, Brasov, 2012.

[13]    Nagaya, K. Ikai, S. Chiba, M. and Chao X., “Tire with Self-Repairing Mechanism,” JSME International Journal Series C, Vol. 49, No. 2, pp. 379-384, 2006.

[14]    Martin, D. Greil, P. Leyens, C. Van der Zwaag, S. and Schubert, U.S., “Self‐Healing Materials,” Advanced Materials, Vol. 22, No. 47, pp. 5424-5430, 2010.

[15]    Cohades, A. Branfoot, C. Rae, S. Bond, I. and Michaud, V., “Progress in Self-Healing Fiber-Reinforced Polymer Composites,” Advanced Materilas Interfaces, Vol. 5, No. 17, 1800177, 2018.

[16]    Ponnamma, D. Sadasivuni, K. K. Cabibihan, J. J. and Al-Maadeed, M. A., “Smart Polymer Nanocomposites,” Smart Polymer Nanocomposites. Springer Series on Polymer and Composite Materials, Cham, pp. 119-152, 2017.

[17]    https://www.engineeringvillage.com.

[18]    Ataei, S. Khorasani, S. N. and Neisiany, R. E., “Biofriendly Vegetable Oil Healing Agents Used for Developing Self-Healing Coatings: A Review,” Progress in Organic Coatings, Vol. 129, pp. 77-95, 2019.

[19]    Es-haghi, H. Mirabedini, S. M. Imani, M. and Farnood, R. R., “Preparation and Characterization of Pre-Silane Modified Ethyl Cellulose-Based Microcapsules Containing Linseed Oil,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 447, pp. 71-80, 2014.

[20]    Fereidoon, A. Ghorbanzadeh Ahangari, M. and Jahanshahi, M., “Effect of Nanoparticles on the Morphology and Thermal Properties of Self-Healing Poly(Urea-Formaldehyde) Microcapsules,” Journal of Polymer Research, Vol. 20, 151, 2013.

[21]    Poormir, M. A. Khalili, S. M. R. and Eslami-Farsani, R., “Optimal Design of a Bio-Inspired Self-Healing Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips,” Journal of Intelligent Materials Systems and Structures, Vol. 29, No. 20, pp. 3972-3982, 2018.

[22]    Poormir, M. A. Khalili, S. M. R. and Eslami-Farsani, R., “Investigation of the Self-Healing Behavior of Sn-Bi Metal Matrix Composite Reinforced with NiTi Shape Memory Alloy Strips Under Flexural Loading,” JOM, Vol. 70, No. 6, pp. 806-810, 2018.

[23]    Shabani, P. Shokrieh, M. M. and Zibaei. I., “Effect of the Conversion Degree and Multiple Healing on the Healing Efficiency of a Thermally Reversible Self‐Healing Polymer,” Polymer Advanced Technology, published online, 2019.

[24]    Saeedi, A. and Shokrieh, M. M., “A Novel Self-Healing Composite Made of Thermally Reversible Polymer and Shape Memory Alloy Reinforcement,” Journal of Intelligent Materials Systems and Structures, Vol. 30, No. 10, pp. 1585-1593, 2019.

[25]    Mozaffari, S. M. Beheshty, M. H. and Mirabedini, S. M., “Effect of Processing Conditions on the Microencapsulation of 1-Methylimidazole Curing Agent Using Solid Epoxy Resins,” Iranian Polymer Journal, Vol. 26, No. 8, pp. 629-637, 2017.

[26]    Aguilar, M. R. and Román, J. S., Smart Polymers and their Applications, Woodhead Publishing,  Cambridge , pp. 271-300, 2014.

[27]    Dry, C., “Procedures Developed For Self-Repair of Polymer Matrix Composite Materials,” Composite Structures, Vol. 35, No. 3, pp. 263-269, 1996.

[28]    Dry, C., “Smart Materials Which Sense, Activate and Repair Damage; Hollow Porous Fibers in Composites Release Chemicals from Fibers for Self-Healing, Damage Prevention, and/or Dynamic Control,” First European Conference on Smart Structures and Materials, Society of Photo-Optical Instrumentation Engineers (SPIE)., Proc. SPIE  1777, Glasgow, 1992.

[29]    Dry, C., “Passive Smart Materials for Sensing and Actuation,” Journal of Intelligent Material Systems and Structures, Vol. 4, No. 3, pp. 420-425, 2016.

[30]    Motuku, M. J. G. M. Vaidya, U. K. and Janowski, G. M., “Parametric Studies on Self-Repairing Approaches for Resin Infused Composites Subjected to Low Velocity Impact,” Smart Materials and Structures, Vol. 8, pp. 623-638, 1999.

[31]    Bleay, S. M. Loader, C. B. Hawyes, V. J. Humberstone, L. and Curtis, P. T., “A Smart Repair System for Polymer Matrix Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 12, pp. 1767-1776, 2001.

[32]    Pang, J. W. C. and Bond, I. P., “Bleeding Composites Damage Detection and Self-Repair Using a Biomimetic Approach,” Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 2, pp. 183-188, 2005.

[33]    Trask, R. S. and Bond, I.P., “Biomimetic Self-Healing of Advanced Composite Structures Using Hollow Glass Fibres,” Smart Materials and Structures, Vol. 15, pp. 704-710, 2006.

[34]    Williams, G. J. Bond, I. P.  and Trask, R. S., “Compression After Impact Assessment of Self-Healing CFRP,” Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 9, pp. 1399-1406, 2009.

[35]    Pang, J. W. C. and Bond, I. P., “A Hollow Fibre Reinforced Polymer Composite Encompassing Self-Healing and Enhanced Damage Visibility,” Composites Science and Technology, Vol. 65, No. 11-12, pp. 1791-1799, 2005.

[36]    Tomizuka, M. and Dry, C., “Self-Repairing Composites for Aairplane Components,” Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Proc. SPIE 6932, San Diego, 2008.

[37]    Kousourakis, A. and Mouritz, A. P., “The Effect of Self-Healing Hollow Fibres on the Mechanical Properties of Polymer Composites,” Smart Materials and Structures, Vol. 19, 085021, 2010.

[38]    McCombe, G. P. Rouse, J. Trask, R. S. Withers, P. J. and Bond, I. P., “X-ray Damage Characterisation in Self-Healing Fibre Reinforced Polymers,” Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 4, pp. 613-620, 2012.

[39]    Kling, S. and Czigány, T., “Damage Detection and Self-Repair in Hollow Glass Fiber Fabric-Reinforced Epoxy Composites via Fiber Filling,” Composites Science and Technology, Vol. 99, pp. 82-88, 2014.

[40]    Eftekhari, H. Eslami-Farsani, R. Khalili, S. M. R. and Ebrahimnezhad-Khaljiri, H., “Optimizing the Self- Healing Behavior of Hollow Glass Fibers Reinforced Epoxy Matrix Composite,” In Persian, Modares Mechanical Engineering, Vol. 17, No. 8, pp. 182-190, 2017.

[41]    Rahimpour, L. Khalili, S. M. R. and Eslami-Farsani, R., “Fabrication and Determination of the Failure Toughness in Self-Healing Polymeric Composite by Hollow Fibers,” In Persian, Third National and First International Conference in Applied Research on Electrical, Mechanical and Mechatronics Engineering, COI: ELEMECHCONF03_1040, Tehran, 2016.

[42]    H. Ghanbari, H. Aghamirzadeh, G. R. Khalili, S.M.R. and Eslami Farsani, R., “Experimental Investigation on Flexural Properties of Self-Healing Composites Fabricated by Short Hollow Fibers,” The Biennial International Conference on Experimental Solid Mechanics, COI: WMECH03_036, Tehran, 2016.

[43]    Eslami-Farsani, R. Sari, A. and Khosravi, H., “Mechanical Properties of Carbon Fibers/Epoxy Composite Containing Anhydride Self-Healing Material Under Transverse Loading,” In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 285-290, 2016.

[44]    Sari, A. Eslami Farsani, R. and Zamani, M. R., “An Experimental Investigation on the Tensile Behavior of Epoxy/Carbon Fibers Composites Containing Anhydride Self-Healing Material,” In Persian, Modares Mechanical Engineering, Vol. 17, No. 3, pp. 336-342, 2017.

[45]    Abbasnia, Sh. And Eslami-Farsani, R., “Experimental Investigation on Flexural Properties of Self-Healing Fiber Metal Laminate by Short Hollow Fibers,” In Persian, The 16th International Conference of Iranian Aerospace Society, COI: AEROSPACE16_402, Tehran, 2017.

[46]    Abbasnia, Sh. Eslami-Farsani, R. Khosravi, H. “Mechanical Performance of Self-Healing Fiber-Metal Laminates Under Transverse Loading”, In Persian, Journal of Science and Technology of Composites, Vol. 5, No. 2, pp. 185-190, 2018.

[47]    Eslami-Farsani, R. Mohabbati, F. and Khosravi, H., “Experimental Study of Tensile Behavior of Self-Healing Fiber-Metal Laminates Composites with Chopped Hollow Glass Fibers,” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 399-404, 2018.

[48]    Khalili, S. M. R. Zarei, M. and Eslami-Farsani, R., “Experimental Study of the Mechanical Behavior of Self-Healing Polymer Composite Under Heating Cycles,” In Persian, Journal of Science and Technology of Composites, Article in Press, Published online: 16 July 2018.

[49]    Mirzapour, N. and Yarmohammad-Toski, M, “Experimental Investigation of Dynamic Behavior of Composite Sandwich Panel Using Self-Healing Materials under Charpy Impact and 3-Point Bending Destruction,” In Persian, Journal of Science and Technology of Composites, Vol. 4, No. 4, pp. 434-442, 2018.

[50]    Feli, M. Eslami-Farsani, R. and Khosravi, H. “Self-Healing Capability in Foam Based Sandwich Panels using Hollow Glass Fibers,” The Biennial International Conference on Experimental Solid Mechanics, COI: WMECH03_044, Tehran, 2016.

[51]    Aghamirzadeh, Gh. R. Khalili, S. M. R. Eslami-Farsani, R. and Saeedi. A., “Experimental Investigation on the Smart Self-Healing Composites Based on the Short Hollow Glass Fibers and Shape Memory Alloy Strips,” Polymer Composites, Published online: 09 November 2018.

[52]    Ghanbari, H. Khalili, S. M. R. Eslami-Farsani, R. and Mahajan. P., “Experimental Investigation on Flexural Properties of Self-Healing Composites Reinforced by Shape Memory Strip,” Mechanics of Advanced Materials and Structures, Published online: 15 April 2019.

[53]    Toohey, K. S. Sottos, N. R. Lewis, J. A. Moore, J. S. and White, S. R., “Self-Healing Materials with Microvascular Networks,” Nature materials, Vol. 6, pp. 581-585, 2007.

[54]    Toohey, K. S. Hansen, C. J. Lewis, J. A. White, S. R. and Sottos, N. R., “Delivery of Two-Part Self-Healing Chemistry via Microvascular Networks,” Advanced Functional Materials, Vol. 19, No. 9, pp. 1399-1405, 2009.

[55]    Hamilton, A. R. Sottos, N. R. and White, S. R., “Self-Healing of Internal Damage in Synthetic Vascular Materials,” Advanced Materials, Vol. 22, No. 45, pp. 5159-5163, 2010.

[56]    Fifo, O. Ryan, K. and Basu, B., “Glass Fibre Polyester Composite within Vivo Vascular Channel for Use in Self-Healing,” Smart Materials and Structures, Vol. 23, 095017, 2014.

[57]    Coope, T. S. Wass, D. F. Trask, R. S. and Bond, I. P., “Metal Triflates as Catalytic Curing Agents in Self-Healing Fibre Reinforced Polymer Composite Materials,” Macromolecular Materials and Engineering, Vol. 299, No. 2, pp. 208-218, 2014.

[58]    Norris, C. J. Meadway, G. J. O'Sullivan, M. J. Bond, I. P. and Trask, R. S., “Self-Healing Fibre Reinforced Composites via a Bioinspired Vasculature,” Advanced Functional Materials, Vol. 21, No. 19, pp. 3624-3633, 2011.

[59]    Trask, R. S. Norris, C. J. and Bond, I. P., “Stimuli-Triggered Self-Healing Functionality in Advanced Fibre-Reinforced Composites,” Journal of Intelligent Material Systems and Structures, Vol. 25, No. 1, pp. 87-97, 2013.

[60]    C J Norris, C. J. White, J. A. P. McCombe, G. Chatterjee, P. Bond, I. P. and Trask R. S., “Autonomous Stimulus Triggered Self-Healing in Smart Structural Composites,” Smart Materials and Structures, Vol. 21, 094027, 2012.

[61]    Mohammadi, M. A. Babolhavaeji, M. R. Eslami-Farsani, R. and Zamani, M. R., “Effect of Time on Healing Behavior of Microvascular Channels Based Self-Healing E-glass Fibers/Epoxy Composite Under Flexural and Tensile Loadings Condition,” In Persian, Journal of Science and Technology of Composites, Article in Press, Published online: 11 July 2018.

[62]    Mohammadi, M. A. Eslami-Farsani, R and Khosravi, H., “On the Mechanical Response of Microvascular-Based Self-Healing E-glass Fiber/Epoxy Composites under Tensile Testing Condition,” In Persian, Journal of Mechanical Engineering (Tabriz University), Vol. 49, No. 2, pp. 323-329, 2019.

[63]    Babolhavaeji, M. R. Eslami-Farsani, R. and Khosravi, H., “Micro-Vascular Channel Based Self-Healing Fibrous Composites Under Transverse Loading,” In Persian, Modares Mechanical Engineering, Vol. 17, No. 5, pp. 63-68, 2017.

[64]    Eslami-Farsani, R. Khalili, S. M. R.  Khademoltoliati, A. and Saeedi, A., “Tensile and Creep Behavior of Microvascular Based Self-Healing Composites- Experimental Study,” Mechanics of Advanced Materials and Structures, Accepted.

[65]    Kim, S. -R. Getachew, B. A. and Kim, J. -H., “Toward Microvascular Network-Embedded Self-Healing Membranes,” Journal of Membrane Science, Vol. 531, pp. 94-102, 2017.

[66]    Nasr-Isfahani, M. Tehran, M. A. Latifi, M. Halvaei, M. and Warnet, L., “Experimental and Theoretical Investigation of Hollow Polyester Fibers Effect on Impact Behavior of Composites,” Journal of Industrial Textiles, Vol. 47, No. 7, pp. 1528-1542, 2018.

[67]    Postiglione, G.  Alberini, M. Leigh, S. Levi, M. and Turri, S., “Effect of 3D-Printed Microvascular Network Design on the Self-Healing Behavior of Cross-Linked Polymers,” ACS applied materials & interfaces, Vol. 9, No. 16, pp. 14371-14378, 2017.

[68]    Lee, M. W. Sett, S. An, S. Yoon, S. S. and Yarin, A. L., “Self-Healing Nanotextured Vascular-Like Materials: Mode I Crack Propagation,” ACS applied materials & interfaces, Vol. 9, No. 32, pp. 27223-27231, 2017.

[69]    Cuvellier, A. orre-Muruzabal, A. Kizildag, N. Daelemans L. Ba Y. De Clerck K. and Rahier, H., “Coaxial Electrospinning of Epoxy and Amine Monomers in a Pullulan Shell for Selfhealing Nanovascular Systems,” Polymer Testing, Vol. 69, pp. 146-156, 2018.

[70]    An, S. Lee, M. W. Yarin, A. L. and Yoon, S. S., “A Review on Corrosion-Protective Extrinsic Self-Healing: Comparison of Microcapsule-Based Systems and Those Based on Core-Shell Vascular Networks,” Chemical Engineering Journal, Vol. 344, pp. 206-220, 2018.

[71]    Cuvellier, A. Torre-Muruzabal, A. Van Assche, G. De Clerck, K. and Rahier, H., “Selection of Healing Agents for a Vascular Self-Healing Application,” Polymer Testing, Vol. 62, pp. 302-310, 2017.

[72]    Brown, E. N. Sottos, N. R. and White, S. R., “Fracture Testing of a Self-Healing Polymer Composite,” Experimental Mechanics, Vol. 42, No. 4, pp. 372-379, 2002.

[73]    Kessler, M., “Characterization and Performance of a Self-Healing Composite Material,” PhD Thesis, University of Illinois at Urbana-Champaign: Urbana, USA, 2002.

[74]    Kessler, M. R. Sottos, N. R. and White, S. R., “Self-Healing Structural Composite Materials,” Composites Part A: Applied Science and Manufacturing, Vol. 34, No. 8, pp. 743-753, 2003.

[75]    Sriram, S. R., “Development of Self-Healing Polymer Composites and Photoinduced Ring Opening Metathesis Polymerisation,”, PhD Thesis, University of Illinois at Urbana-Champaign: Urbana, USA, 2002.

[76]    Brown, E. N. Kessler, M. R. Sottos, N. R. and White, S. R., “In Situ Poly (Urea-Formaldehyde) Microencapsulation of Dicyclopentadiene,” Journal of Microencapsulation, Vol. 20, No. 6, pp. 719-730, 2003.

[77]    Skipor, A. Scheifer, S. and Olson, B., “Self Healing Polymer Compositions,” US Pat. 7108914B2, 2004.

[78]    Scheifers, S. M. Estates, H. Skiper, A. F. and Brown, A., “Method and Chemistry for Automatic Self-Joining of Failures in Polymers,” US Pat. 6588660B1, 2005.

[79]    Lee, J. K. Hong, S. J. and Liu X., “Characterization of Dicyclopentadiene and 5-Ethylidene-2-Norbornene as Self-Healing Agents for Polymer Composite and Its Microcapsules,” Macromolecular Research, Vol. 12, No. 5, pp. 478-483, 2004.

[80]    Liu, X. Lee, J. K. Yoon, S. H. and Kessler, M. R., “Characterization of Diene Monomers as Healing Agents for Autonomic Damage Repair,” Journal of Applied Polymer Science, Vol. 101, No. 3, pp. 1266-1272, 2006.

[81]    Yang, Y. -S. Lafontaine, E. and Mortaigne, B., “Curing Study of Dicyclopentadiene Resin and Effect of Elastomer on Its Polymer Network,” Polymer, Vol. 38, No. 5, pp. 1121-1130, 1997.

[82]    Mol, J., “Industrial Applications of Olefin Metathesis,” Journal of Molecular Catalysis A: Chemical, Vol. 213, No. 1, pp. 39-45, 2004.

[83]    Khosravi, E. and Szymanska-Buzar, T., “Ring Opening Metathesis Polymerisation and Related Chemistry: State of the Art and Visions for the New Century,” Vol. 56, First ed., Kluwer Academic Publishers, Dordrecht, pp. 17-21, 2002.

[84]    Rule, J. D. Brown, E. R. Sottos, N. R. White, S. R. and Moore, J. S., “Wax‐Protected Catalyst Microspheres for Efficient Self‐Healing Materials,” Advanced Materials, Vol. 17, No. 2, pp. 205-208, 2005.

[85]    Jones, A. S. Rule, J. D. Moore, J. S. White, S. R. and Sottos, N. R., “Catalyst Morphology and Dissolution Kinetics of Self-Healing Polymers,” Chemistry of Materials, Vol. 18, No 5. , pp. 1312-1317, 2006.

[86]    Fu, G. C. Nguyen, S. T. and Grubbs, R. H., “Catalytic Ring-Closing Metathesis of Functionalized Dienes by a Ruthenium Carbene Complex,” Journal of the American Chemical Society, Vol. 115, No. 21, pp. 9856-9857, 1993.

[87]    Wright, D. L. Schulte, J. P. and Page, M. A., “An Imine Addition/Ring-Closing Metathesis Approach to the Spirocyclic Core of Halichlorine and Pinnaic Acid,” Organic letters, Vol. 2, No. 13, pp. 1847-1850, 2000.

[88]    Cho, S. H. Andersson, H. M. White, S. R. Sottos, N. R. and Braun, P. V., “Polydimethylsiloxane- Based Self-Healing Materials,” Advanced Materials, Vol. 18, No. 8, pp. 997-1000, 2006.

[89]    Van der Weij, F. W., “The Action of Tin Compounds in Condensation‐Type RTV Silicone Rubbers,” Die Makromolekulare Chemie, Vol. 181, No. 12, pp. 2541-2548, 1980.

[90]    Shah, G. B., “Effect of Length of Ligand in Organotin Compounds on Their Catalytic Activity for the Polycondensation of Silicone,” Journal of applied polymer science, Vol. 70, No. 11, pp. 2235-2239, 1998.

[91]    Frere, Y. Danicher, L. and Gramain, P., “Preparation of Polyurethane Microcapsules by Interfacial Polycondensation,” European polymer journal, Vol. 34, No. 2, pp. 193-199, 1998.

[92]    Hegeman, A., “Self Repairing Polymers: Repair Mechanisms and Micromechanical Modelling,” MSc Thesis, University of Illinois at Urbana-Champaign: Urbana, USA, 1997.

[93]    Rule, J. D. Sottos, N. R. and White, S. R., “Effect of Microcapsule Size on the Performance of Self-Healing Polymers,” Polymer, Vol. 48, No. 12, pp. 3520-3529, 2007.

[94]    Caruso, M. M. Blaiszik, B. J. Jin, H. Schelkop, S. R. Stradley, D. S. Sottos, N. R. White, S. R. and Moore, J. S., “Robust, Double-Walled Microcapsules for Self-Healing Polymeric Materials,” ACS applied materials & interfaces, Vol. 2, No. 4, pp. 1195-1199, 2010.

[95]    Jackson, A. C. Bartelt, J. A. Marczewski, K. Sottos, N. R. and Braun, P. V., “Silica-Protected Micron and Sub-Micron Capsules and Particles for Self-Healing at the Microscale,” Macromolecular Rapid Communications, Vol. 32, No. 1, pp. 82-87, 2011.

[96]    Jin, H. Mangun, C. L. Stradley, D. S. Moore, J. S. Sottos, N. R. and White, S. R., “Self-Healing Thermoset Using Encapsulated Epoxy-Amine Healing Chemistry,” Polymer, Vol. 53, No. 2, pp. 581-587, 2012.

[97]    Jin, H. Miller, G. M. Sottos, N. R. and White, S. R., “Fracture and Fatigue Response of a Self-Healing Epoxy Adhesive,” Polymer, Vol. 52, No. 7, pp. 1628-1634, 2011.

[98]    Zhao, Y. Fickert, J. Landfester, K. and Crespy, D., “Encapsulation of Self-Healing Agents in Polymer Nanocapsules,” Small, Vol. 8, No. 19, pp. 2954-2958, 2012.

[99]    Lee, J. Zhang, M. Bhattacharyya, D. Yuan, Y. C. Jayaraman, K. and Mai, Y. W., “Micromechanical Behavior of Self-Healing Epoxy and Hardener-Loaded Microcapsules by Nanoindentation,” Materials Letters, Vol. 76, pp. 62-65, 2012.

[100]  Nesterova, T. Dam-Johansen, K. Pedersen, L. T. and Kiil, S., “Microcapsule-Based Self-Healing Anticorrosive Coatings: Capsule Size, Coating Formulation, and Exposure Testing,” Progress in Organic Coatings, Vol. 75, No. 4, pp. 309-318, 2012.

[101]  Hatami Boura, S. Peikari, M. Ashrafi, A. and Samadzadeh, M., “Self-Healing Ability and Adhesion Strength of Capsule Embedded Coatings-Micro and Nano sized Capsules Containing Linseed Oil,” Progress in Organic Coatings, Vol. 75, No. 4, pp. 292-300, 2012.

[102]  Zhu, D. Y. Rong, M. Z. and Zhang, M. Q., “Preparation and Characterization of Multilayered Microcapsule-Like Microreactor for Self-Healing Polymers,” Polymer, Vol. 54, No. 16, pp. 4227-4236, 2013.

[103]  Lv, Z. and Chen, H., “Analytical Models for Determining the Dosage of Capsules Embedded in Self-Healing Materials,” Computational Materials Science, Vol. 68, pp. 81-89, 2013.

[104]  Li, Q. Mishra, A. K. Kim, N. H. Kuila, T. Lau, K. -T. and Lee, J. H., “Effects of Processing Conditions of Poly(Methylmethacrylate) Encapsulated Liquid Curing Agent on the Properties of Self-Healing Composites,” Composites Part B: Engineering, Vol. 49, pp. 6-15, 2013.

[105]  Li, Q. Siddaramaiah, Q. Li, Kim, N. H. Hui, D. and Lee, J. H., “Effects of Dual Component Microcapsules of Resin and Curing Agent on the Self-Healing Efficiency of Epoxy,” Composites Part B: Engineering, Vol. 55, pp. 79-85, 2013.

[106]  Jones, A. R. Blaiszik, B. J. White, S. R. and Sottos, N. R., “Full Recovery of Fiber/Matrix Interfacial Bond Strength Using a Microencapsulated Solvent-Based Healing System,” Composites Science and Technology, Vol. 79, pp. 1-7, 2013.

[107]  Bolimowski, P. A. Bond, I. P. and Wass, D. F., “Robust Synthesis of Epoxy Resin-Filled Microcapsules for Application to Self-Healing Materials,” Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, Vol. 374, 20150083, 2016.

[108]  Tripathi, M. Kumar, D. and Roy, P. K., “Microencapsulation of Reactive Amine by Interfacially Engineered Epoxy Microcapsules for Smart Applications,” Iranian Polymer Journal, Vol. 26, No. 7, pp. 489-497, 2017.

[109]  Mohammadi, M. A. Eslami-Farsani, R. Ebrahimnezhad-Khaljiri, H. Mirzamohammadi, S. and Zamani, M. R., “Investigating Compression Properties of Healed Sandwich Structure via Epoxy and TETA Microcapsules,” The Biennial International Conference on Experimental Solid Mechanics, COI: WMECH04_012, Tehran, 2018.

[110]     Eslami-Farsani, R. Najafi, A. and Ebrahimnezhad-Khaljiri, H., “Investigating the Tensile Behavior of Glass Fibers-Epoxy/Poly Vinyl Chloride Self-Healable Sandwich Panel Containing Capsulated Healing Agent,” In Persian, The 27th Annual International Conference of Iranian Society of Mechanical Engineers, Tehran, 2019.

[111]     Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R. and Arbab Chirani, Sh., “Investigating the Healing Behavior of Glass Fibers-Epoxy/ Capsulated Healing Agent Composite under Tensile Loading,” In Persian, The 27th Annual International Conference of Iranian Society of Mechanical Engineers, Tehran, 2019.

[112]     Najafi, A. Eslami-Farsani, R. and Ebrahimnezhad-Khaljiri, H., “Investigating the Healing Behavior of Carbon Fibers-Epoxy/ Capsulated Healing Agent Composite under Transverse Loading,” In Persian, The 27th Annual International Conference of Iranian Society of Mechanical Engineers, Tehran, 2019.

[113]     Raeesi, M. Mirabedini, S. M. and Farnood, R. R., “Preparation of Microcapsules Containing Benzoyl Peroxide Initiator with Gelatin-Gum Arabic /Polyurea Formaldehyde Shell and Evaluating their Storage Stability,” Applied Materials & Interfaces, Vol. 9, No. 24, pp. 20818-20825, 2017.

[114]     Silva, A. C. M. Moghadam, A. D. Singh, P. and Rohatgi, P. K., “Self-Healing Composite Coatings Based on In Situ Micro–Nanoencapsulation Process for Corrosion Protection,” Journal of Coatings Technology and Research, published online, 2017.

[115]     Ullah, H. Azizli, K. Man, Z. B. and Ismail, M. B. C., “Synthesis and Characterization of Urea-Formaldehyde Microcapsules Containing Functionalized Polydimethylsiloxanes,” Procedia Engineering, Vol. 148, pp. 168-175, 2016.

[116]     Shahabudin, N. Yahya, R. and Gan, S., “Microcapsules Filled with a Palm Oil-based Alkyd as Healing Agent for Epoxy Matrix,” Polymers, Vol. 8, No. 4, 125, 2016.

[117]     Khalaj Asadi, A. Ebrahimi, M. and Mohseni, M., “Preparation and Characterisation of Melamine-Urea-Formaldehyde Microcapsules Containing Linseed Oil in the Presence of Polyvinylpyrrolidone as Emulsifier,” Pigment & Resin Technology, Vol. 46, No. 4, pp. 318-326, 2017.

[118]     Cai, X. Fu, D. and Qu, A., “Effects of Fluorinated Silane Compound on the Repeated Self- Healing Properties of Nanocapsules,” Journal of Polymer Research, Vol. 23, No. 2, 18, 2016.

[119]     Hia, I. L. Chan E.- S. Chai S.- P. and Pasbakhsh P., “Novel Repeated Self-Healing Epoxy Composite with Alginate Multicore Microcapsules,” Journal of Materials Chemistry A, Vol. 6, pp. 8470-8478, 2018.

[120]     Composites: Part B Vol. 43, pp. 95-98, 2012.  Park, S. J. Kim, B. J. Seo, D. I. Rhee, K. Y. and Lyu, Y. Y., “Effects of a Silane Treatment on the Mechanical Interfacial Properties of Montmorillonite/Epoxy Nanocomposites”, Materials Science and Engineering A, Vol. 526, pp. 74–78, 2009.

[121]     ASTM D2344/D2344M: Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates.

[122]     ASTM 790–10: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.

[123]      Khosravi, H. and Eslami-Farsani, R., “Enhanced Mechanical Properties of Unidirectional Basalt Fiber/Epoxy Composites using Silane-Modified Na+-Montmorillonite Nanoclay”, Polymer Testing, Vol. 55, 135-142, 2016.

[124]     Kathi, J. and Rhee, K.Y., “Surface Modification of Multi-Walled Carbon Nanotubes using 3-Aminopropyltriethoxysilane”, Journal of Materials Science, Vol. 43, pp. 33-37, 2008.

[125]     Sanchez, M. Campo, M. and Jimenez-Suarez, A., “Effect of the Carbon Nanotube Functionalization on Flexural Properties of Multiscale Carbon Fiber/Epoxy Composites Manufactured by VARIM”, Composite Part B Engineering, Vol. 45, pp. 1613-1619, 2013.

[126]     He, H. and Gao, F., “Resin modification on Interlaminar Shear Property of Carbon Fiber/Epoxy/Nano-CaCO3 Hybrid Composites”, Polymer Composites, Vol. 38, No. 90, pp. 2035-2042, 2017.