نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مواد، دانشگاه سمنان، سمنا ن.

2 دانشیار، مهندسی مواد، دانشگاه سمنان، سمنا ن.

3 دکترا، مهندسی مواد، دانشگاه سمنان، سمنان.

10.22068/jstc.2019.98558.1498

چکیده

هیدروکسی آپاتیت به دلیل زیست سازگاری و داشتن ترکیب شیمیایی مشابه ماتریس معدنی استخوان، به عنوان ماده جایگزین استخوان مورد توجه قرار گرفته است. علی‌رغم برخورداری هیدروکسی آپاتیت از خواص زیستی مناسب، این ماده از خواص مکانیکی ضعیفی برخوردار است. فلوئورهیدروکسی آپاتیت به علت دارا بودن پایداری حرارتی بالاتر نسبت به هیدروکسی آپاتیت، خواص مکانیکی بهتری دارد و ترکیب آن با آلژینات به صورت داربست کامپوزیتی، ضمن بهبود خواص بیولوژیکی می‌تواند آن‌ را به جایگزینی مناسب برای هیدروکسی آپاتیت تبدیل کند. در این پژوهش فلوئورهیدروکسی آپاتیت با استفاده از روش هم رسوبی تهیه شد و سپس کامپوزیت‌های آلژینات- فلوئورهیدروکسی آپاتیت با 40، 50 و 60 درصد وزنی فلوئورهیدروکسی آپاتیت به روش خشکایش انجمادی ساخته شدند. به منظور مشخصه‌یابی داربست‌های ساخته شده آزمون‌های میزان سمیت سلولی با روش غیر مستقیم (MTT)، آلکالین فسفاتاز (ALP)، طیف‌سنجی فوریه فروسرخ (FTIR)، پراش پرتو ایکس (XRD)، طیف نگاری فلوئورسانس اشعه ایکس (XRF)، آنالیز حرارتی (TG-DSC) و آزمون‌های فشاری استفاده شدند. ریخت شناسی سطحی و همچنین نحوه اتصال و رشد سلول‌های استخوانی روی سطح داربست، با استفاده از میکروسکوپ الکترونی روبشی (SEM) بررسی شد. تجزیه تحلیل داده‌ها با استفاده از آنوا یک طرفه انجام گرفت. نتایج نشان داد که داربست کامپوزیتی سدیم آلژینات- 60% فلوئورهیدروکسی آپاتیت در مقایسه با دو داربست دیگر از نظر خواص بیولوژیکی و مکانیکی دارای شرایط مناسب و بهینه می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Design, preparation, characterization and biological investigation of Sodium Alginate/ Flourohydroxyapatite composite scaffold for bone tissue engineering application

نویسندگان [English]

  • Mohammad Soltani 1
  • Mardali Yousef-Pour 2
  • Zahra Taherian 3

1 Department of Material Engineering, Semnan University, Semnan, Iran.

2 Department of Material Engineering, Semnan University, Semnan, Iran.

3 Department of Material Engineering, Semnan University, Semnan, Iran.

چکیده [English]

Hydroxyapatite has been studied intensively as an alternative to bone due to its biocompatibility and the chemical composition of the bone mineral matrix. Despite the good biological properties of hydroxyapatite, this material has poor mechanical properties. Flourhydroxyapatite due to its higher thermal stability than hydroxyapatite, has better mechanical properties and its combination with with alginate as an composite scaffold, while improving its biological properties, can be used as a substitute for hydroxyapatite. In this study, flourohydroxyapatite was prepared using a co-precipitation method, and then Alginate- Flourohydroxyapatite composites with 40, 50 and 60 wt% flourohydroxyapatite were synthesized by freeze-drying technique. In order to characterize the scaffolds, MTT, ALP, FTIR, XRD, XRF, TG/DSC and compressive tests were used. Surface morphology, as well as the connection and growth of bone cells on the scaffold surface, were studied using SEM. Data analysis were performed using one-way ANOVA. The results showed that Alginate-60wt% flourhydroxyapatite composite scaffold has sutble and optimal conditions for bio-mechanical and biologiical properties. in comparison with two other scaffolds tha prepared in this study.

کلیدواژه‌ها [English]

  • Composite
  • Hydroxyapatite
  • Flourohydroxyapatite
  • Alginate

 [1]   Sachlos, E. Czernuszka, JT., “The Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds”,    European Cells and Materials, Vol. 05, No. -, pp. 29-39, 2003.

[2]    Cima, L. Vacanti, JP. Vacanti, C. Ingber, D. Mooney, D. Langer, R., “Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates”, Journal of Biomechanical Engineering, Vol. 113, No. 02, pp. 143-149, 1991.

[3]    Takei, J., “Drug Screening, Tissue Engineering and Cancer Biology”, Alternatives to Animal Testing and EXperimentation, Vol. 11, No. 03, pp. 170-176, 2006.

[4]    Slaughter, BV. Khurshid, SS. Fisher, OZ. Khademhosseini, A. Peppas, NA., “Hydrogels in Regenerative Medicine”, Advanced Materials, Vol. 21, pp. No. 32-33, pp. 3307-3329, 2009.

[5]     Fang, Z. Starly, B. Sun, W., “Computer-Aided Characterization for Effective Mechanical Properties of Porous Tissue Scaffolds”, Computer Aided Design, Vol. 37, No. 01, pp. 65-72, 2005.

[6]     Yang, S. Leong, KF. Du, Z. Chua CK., “The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors”, Tissue Engineering, Vol. 07, No. 06, pp. 679-689, 2001.

[7]    Niknejad, H. Periovi, H. Jorian, M. Ahmadiani, A. Ghanavi, J. Seifalian, AM., “Properties of the Amniotic Membrane for Potential use in Tissue Engineering”, European Cells & Materials, Vol. 15, No. -, pp. 88-99, 2008.

[8]      Hutamacher,W. Schantz,T. Zien, I. Ng, KW. Teoh, SH. Tan, KC., “Mechanical Properties and Cell Cultural Response of Polycaprolactone   Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research, Vol. 55, No. 02, pp. 203-216, 2001.

[9]   Chen, Y. Mak, AFT. Wang, M. Li, J. Wong, MS., “PLLA Scaffolds with Biomimetic Apatite Coating and Biomimetic Apatite/Collagen Composite Coating to Enhance Osteoblaslike Cells Attachment and Activity”, Surface and Coatings Technology, Vol. 201, No. 03-04, pp. 575-658, 2006.

[10]    Ishaug, SL. Crane, GM. Miller, MG. Yasko, AW. Yaszemski,MJ. Mikos, AJ., “Bone Formation by Three Dimentional Stormal Osteoblast Culture in Biodegradable Polymer Scaffolds”, Journal of Biomedical Materials Research, Vol. 36, No. 01, pp. 17-28,1997.

[11]   Liu1,C. Z. Xia, J. T. Czernuszka., “Design and Development of Three-Dimentional Scaffolds for Tissue Engineering, ” International Journal of Chemical Engineerting research and design, Vol. 85, No. 07,  pp. 1051-1064, 2007.

[12]   Lyons, F. Partap, S. O'Brien, FJ., “Part 1: Scaffolds and Surfaces. Technology and Health Care”, Journal of the European Society for Engineering and Medicine, Vol. 16, No. 04, pp. 305-17, 2008.

[13]  Ramakrishna, S. Mayer, J. Wintermantel, E. Leong, KW., “Biomedical Applications of Polymercomposite Materials”, Composites Science and Technology, Vol. 61, No. 09, pp. 1189-224, 2001.

[14]   Zhou, H. Lee, J., “Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering”, Acta biomaterialia, Vol. 07, No. 07, pp. 2769-81, 2011.

[15]    Kamali, S. Khavandi, A. Shemshad, S. and Malekmohammadi, E., “Effect of Nitinol Addition on the Mechanical Properties and the Microstructure of Natural Hydroxyapatite Obtained From Calf Femoral Bone”, In Persian, Journal of Science and Technology of Composites, Vol. 05, No. 02, pp. 238-244, 2018.

[16]  Sattary, M. Rafienia, M. Khorasani, MT. Salehi-Rozve, H., “Study of Cell Behavior of the Electrospun Polycaprolactone/Gelatin Scaffold Containing Nanohydroxyapatite and Vitamin D3”, In Persian, Journal of  Isfahan Medical School, Vol. 35, No. 425, pp. 387-92, 2017.

[17] Nouri-Niyaraki, M. Ashenai-Ghasemi, F. Ghasemi, I. and Daneshpayeh, S., “Experimental Analysis of Graphene Nanoparticles and Glass Fibers Effect on Mechanical and Thermal Properties of Polypropylene/EPDM Based Nanocomposites”, In Persian, Journal of Science and Technology of Composites, Vol. 05, No. 02, pp. 169-176, 2018.

[18]  Ehterami, A. Saraeian, P. Etemadi Haghighi, Sh. Azami, M., “Preparation and Characterization of Barium Titanate Scaffold for Bone Tissue Engineering”, In Persian, Journal of Modares Mechanical Engineering, Vol. 17, No. 12, pp. 417-422, 2018.

[19] Azami, M. Moztarzadeh, F. Rabiee, M., “Preparation of Nanocomposite Gelatin/apatite Scaffold Through a Biomimetic Method”, In Persian,  Iranian journal of biomedical engineering, Vol. 03, No. 04, pp. 275-284, 2010.

[20]  Hench, L. “Bioceramics: From Concept to Clinic,” Journal of American Ceramic Society, Vol. 102, No. 01, pp. 1487-1510, 1991.

[21]  Öner, M. Yetiz, E. Ay, E. Uysal, U., “Ibuprofen release From Porous  Hydroxyapatite Tablets”, Ceramics International, Vol. 37, No. 07, pp. 2117-25, 2011.

[22] Lima, I.R. Alves, G.G. Soriano, C.A. Campaneli, A.P. Gasparoto, T.H. Ramos, E.S. Sena, L.A. Rossi, A.M. Granjeir, J.M., “Understanding the Impact of Divalent Cationsubstitution on Hydroxyapatite: an in Vitro Multiparametric Study on Biocom-Patibility”, J. Biomed Mater. Res. Part A, Vol. 98, No. 3, pp. 351-358, 2011.

[23] Yang, H. Xiao, B. Xu, K.W. “Synthesis and Characterization of Ag/ Cu/ HAP with Platelet Morphology”, J. Mater. Sci. Mater. Med, Vol. 20, No. 3, pp. 785–792, 2009.

[24]   Cheng, K. Shen, G. Weng, W. Han, G. Ferreira, M.F. Yang, Juan., “Synthesis of Hydroxyapatite/Fluoroapatite Solid Solution by Sol-Gel Method”, Materials Letters, Vol. 51, No. 01 pp. 37-41, 2001.

[25]   Burg, KJ. Porter, S. Kellam, JF., “Biomaterial Developments for Bone Tissue Engineering”, Biomaterials, Vol. 21, No. 23, pp. 59-2347, 2000.

[26] Hutmacher, DW., “Scaffolds in Tissue Engineering Bone and Cartilage”, Biomaterials, Vol. 21, No. 24, pp. 2529-43, 2000.

[27]  Jarosz, S. Kamerling, J. Coimbra, M. Andrade, M.Christensen, B. Rudd, P.Videira, P. Pilar Rauter, A. Lindhorst, T., “Carbohydrate Chemistry”, First ed., Royal Society of Chemistry, pp. 227‐258, 2011.

[28] Wang, L. Shelton, RM. Cooper, PR. Lawson, M. Triffitt, JT. Barralet, JE., “Evaluation of Sodium Alginate for Bone Marrow Cell Tissue Engineering”, Biomaterials, Vol. 24, No. 20, pp. 3475-3481, 2003.

[29] Nasri-Nasrabadi, B. Kaynak, A. Heidarian, P. Komeily‐Nia, Z. Mehrasa, M. Salehi, H. Kouzani, A., “Sodium Alginate/Magnesium Oxide Nanocomposite Scaffolds for Bone Tissue Engineering”, Polym Adv Technol, Vol. 29, No. 9, pp. 1–7, 2018.

[30]  Wang, Q. Hu, X. Du, Y. and Kennedy, J. F., “Alginate/Starch Blend Fibers and Their Properties for Drug Controlled Release,” Carbohydrate Polymers, Vol. 82, No. 03, pp. 842-847, 2010.

[31]   Yang, G. Zhang, L. Peng, T. and Zhong. W., “Effects of Ca2+ Bridge Cross-Linking on Structure and Pervaporation of Cellulose/ Alginate Blend Membranes,” Journal of Membrane Science, Vol. 175, No. 01, pp. 53-60, 2000.

[32]   Murphy, CM. Haugh, MG. O'Brien, FJ., “The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen-Glycosaminoglycan Scaffolds for Tissue Engineering”, Biomaterials, Vol. 31, No. 3, pp. 461-6, 2010.

[33]  Cowin, C., “Bone Mechanics Handbook”, Second ed., Boca Raton, pp. 70-73, 2000.

[34] Parhi, P. Ramanan, A. Ray A. R., “Preparation and      Characterization of Alginate and Hydroxyapatite‐Based Biocomposite”, Journal of Applied Polymer Science, Vol. 102, No. 6, pp. 5162-5165, 2006.

[35]   Ruys, A.J. Wei, M. Sorrell, C.C. Dickson, M.R. Brandwood, A. Milthorpe, B.K., “Sintering Effects on the Strength of Hydroxyapatite”, Biomaterials, Vol. 16, No. 5, pp. 409-415, 1995.

[36]   Asefnejad, A. Behnamghader, A. Khorasani, M. Farsadzadeh, B., “Polyurethane/Fluor-Hydroxyapatite Nanocomposite Scaffolds for Bone Tissue Engineering. Part I: MorphologicalMechanical Characterization”, International Journal of Nanomedicine, Vol. 6, No. 1, pp. 93-100, 2011.