نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تهران، تهران.

2 دانشیار، مهندسی مکانیک، دانشگاه تهران، تهرا ن

3 استادیار ، مهندسی مکانیک، دانشگاه تهران، تهرا ن.

10.22068/jstc.2019.108366.1551

چکیده

در این مطالعه، اثر تقویت مکانیکی آهار الیاف شیشه بر روی خواص مکانیکی عرضی کامپوزیت شیشه/اپوکسی، به جهت تأثیر زیاد این ناحیه بر روی خواص مکانیکی کلی کامپوزیت‌های تقویت‌شده با الیاف، بررسی شده است. برای پیش‌بینی مدول الاستیسیته و استحکام کششی عرضی کامپوزیت شیشه/اپوکسی، به ترتیب یک المان حجمی نماینده و یک مدل سه‌بعدی پوسته در نرم‌افزار تجاری آباکوس شبیه‌سازی شده‌اند. خواص مکانیکی آهار به‌صورت ناهمگن و غیریکنواخت در طول ضخامت آن در نظر گرفته شده است. علاوه بر این، تقویت آهار با استفاده از یک روش توزیع تصادفی و استفاده از نانولوله‌های کربنی انجام گرفته است. در این شبیه‌سازی، طول، قطر و کسر حجمی‌های مختلف برای نانولوله‌های کربنی در تقویت آهار در نظر گرفته شده است و سپس نتایج مقایسه شده‌اند. مقایسه نتایج به‌دست‌آمده از شبیه‌سازی و داده‌های تجربی موجود، نشان می‌دهد که شبیه‌سازی آهار با خواص مکانیکی غیریکنواخت نسبت به آهار با خواص مکانیکی ثابت، نتایج دقیق‌تری را ارائه می‌دهد. همچنین، نشان داده شده است که افزایش طول نانولوله‌های کربنی و یا کاهش قطر آن‌ها، که در آهار توزیع شده‌اند، باعث بهبود مدول الاستیسیته و استحکام کششی عرضی کامپوزیت شیشه/اپوکسی می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Numerical study of the effect of glass fiber sizing reinforcement by randomly distributed CNTs on the glass/epoxy composite transverse mechanical properties

نویسندگان [English]

  • Ehsan Hayati 1
  • Majid Safarabadi 2
  • Mahdi Moghimi Zand 3

1 School of mechanical engineering, College of engineering, University of Tehran, Tehran, Iran

2 School of mechanical engineering, College of engineering, University of Tehran, Tehran, Iran.

3 School of mechanical engineering, College of engineering, University of Tehran, Tehran, Iran.

چکیده [English]

In this study, the effect of mechanical reinforcement of glass fiber sizing on the transverse mechanical properties of the glass/epoxy composite, due to the significant impact of this region on the overall mechanical properties of reinforced composites with fibers, has been investigated. To predict the transverse elastic modulus and tensile strength of the glass/epoxy composite, a representative volume element (RVE) and a three-dimensional shell model are simulated respectively, in ABAQUS commercial software. Sizing mechanical properties are held non-homogeneous and non-uniform along its thickness in the simulation. Furthermore, sizing reinforcement is done by a Random-Distribution method using carbon nanotubes (CNTs). Different lengths, diameters and, volume fractions are considered for the CNTs in sizing reinforcement in this simulation, and then the results are compared. The comparison between the results obtained from simulation and available experimental data illustrates that the sizing simulated by non-uniform mechanical properties provides more precise results than the sizing assumed by constant mechanical properties. Also, it is shown that increasing in CNTs length or decreasing in their diameter, which are distributed in sizing, would lead to improving the transverse elastic modulus and tensile strength of the glass/epoxy composite.

کلیدواژه‌ها [English]

  • Finite Element Analysis
  • Sizing
  • Interphase
  • Transverse elastic modulus
  • Transverse tensile strength
[1]   Kang, I., Heung, Y. Y., Kim, J. H., Lee, J. W., Gollapudi, R., Subramaniam, S., Narasimhadevara, S., Hurd, D., Kirikera, G. R., Shanov, V., Schulz, M. J., Shi, D., Boerio, J., Mall, S. and  Ruggles-Wren, M., “Introduction to Carbon Nanotube and Nanofiber Smart Materials“ Composites Part B: Engineering, Vol. 37, No. 6, pp. 382-394, 2006.
[2]   Yu, M. F., Files, B. S., Arepalli, S. and  Ruoff, R. S., “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties“ Physical Review Letters, Vol. 84, No. 24, pp. 5552-5555, 2000.
[3]   Setoodeh, A. R., Sokhandani, N. and  Zebarjad, S. M., “Theoretical and experimental study on the effect of multi-walled carbonnanotubes on improving the tensile properties and toughness of Vinyl ester resin“ In Persion, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 539-550, 2019.
[4]   Tabatabaee-Ghomi, M., Taheri-Behrooz, F., Razavi, M. and  Liaghat, G. H., “Electrical conductivity enhancement of Carbon/Epoxy composites using nanoparticles“ In Persion, Journal of Science and Technology of Composites, Vol. 5, No. 4, pp. 605-614, 2019.
[5]   Hosseini Abbandanak, S. N., Siadati, M. H. and  eslami-farsani, R., “Effects of functionalized graphene nanoplatelets on the flexural behaviors of basalt fibers/epoxy composites“ In Persion, Journal of Science and Technology of Composites, Vol. 5, No. 3, pp. 315-324, 2018.
[6] Khanna, S. K., Winter, R. M., Ranganathan, P., Yedla, S. B., Kalukanimuttam, M. and  Paruchuri, K., “Sample Preparation Techniques for Nano-Mechanical Characterization of Glass Fiber Reinforced Polyester Matrix Composites“ Composites Part A: Applied Science and Manufacturing, Vol. 34, No. 1, pp. 53-65, 2003.
[7]   Tanoglu, M., McKnight, S. H., Palmese, G. R. and  Gillespie, J. W., “A New Technique to Characterize the Fiber/Matrix Interphase Properties under High Strain Rates“ Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 10, pp. 1127-1338, 2000.
[8]   Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A. W., Lomov, S. V. and  Verpoest, I., “Interfacial Shear Strength of a Glass Fiber/Epoxy Bonding in Composites Modified with Carbon Nanotubes“ Composites Science and Technology, Vol. 70, No. 9, pp. 1346-1352, 2010.
[9]   Barber, A. H., Zhao, Q., Wagner, H. D. and  Baillie, C. A., “Characterization of E-Glass-Polypropylene Interfaces Using Carbon Nanotubes as Strain Sensors“ Composites Science and Technology, Vol. 64, No. 13-14, pp. 1915-1919, 2004.
[10] Chowdhury, S. C., Haque, B. Z. G., Okabe, T. and  Gillespie Jr, J. W., “Modeling the Effect of Statistical Variations in Length and Diameter of Randomly Oriented Cnts on the Properties of Cnt Reinforced Nanocomposites“ Composites Part B: Engineering, Vol. 43, No. 4, pp. 1756-1762, 2012.
[11] Joshi, U. A., Sharma, S. C. and  Harsha, S. P., “Effect of Carbon Nanotube Orientation on the Mechanical Properties of Nanocomposites“ Composites Part B: Engineering, Vol. 43, No. 4, pp. 2063-2071, 2012.
[12] Mahdavi, M., Yousefi, E., Baniassadi, M., Karimpour, M. and  Baghani, M., “Effective Thermal and Mechanical Properties of Short Carbon Fiber/Natural Rubber Composites as a Function of Mechanical Loading“ Applied Thermal Engineering, Vol. 117, pp. 8-16, 2017.
[13] El Moumen, A., Tarfaoui, M. and  Lafdi, K., “Computational Homogenization of Mechanical Properties for Laminate Composites Reinforced with Thin Film Made of Carbon Nanotubes“ Applied Composite Materials, Vol. 25, No. 3, pp. 1-20, 2018.
[14] Ghasemi, A. R. and  Hosseinpour, K., “Thermo-Magneto-Mechanical Long-Term Creep Behavior of Three-Phase Nano-Composite Cylinder “ Composites Science and Technology, Vol. 167, No.83  pp. 71-78, 2018.
[15] Zabihpoor, M. and  Adibnazari, S., “A Micromechanics Approach for Fatigue of Unidirectional Fibrous Composites“ Iranian Polymer Journal (English Edition), Vol. 16, No. 4, pp. 219-232, 2007.
[16] Rahimi, G.H., Zamani, R. and  Pol, M.H., “Studies on the tensile   and flexural properties of TETA-cured epoxy resins modified with clay“ In Persion, Modares Mechanical Engineering, Vol. 14, No. 6, pp. 29-34, 2014.
[17] Papanicolaou, G. C., Michalopoulou, M. V. and  Anifantis, N. K., “Thermal Stresses in Fibrous Composites Incorporating Hybrid Interphase Regions“ Composites Science and Technology, Vol. 62, No. 14, pp. 1881-1894, 2002.
[18] Riaño, L., Belec, L., Chailan, J. F. and  Joliff, Y., “Effect of Interphase Region on the Elastic Behavior of Unidirectional Glass-Fiber/Epoxy Composites“ Composite Structures, Vol. 198, pp. 109-116, 2018.
[19] Azad, E., “Mechanical reinforcement on glass/fiber sizing “ MSc Thesis, Iran University of Science & Technology, Iran, 2016.
[20] El-Hage, H., Mallick, P. K. and  Zamani, N., “A Numerical Study on the Quasi-Static Axial Crush Characteristics of Square Aluminum–Composite Hybrid Tubes“ Composite Structures, Vol. 73, No. 4, pp. 505-514, 2006.
[21] Lapczyk, I. and  Hurtado, J. A., “Progressive Damage Modeling in Fiber-Reinforced Materials“ Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 11, pp. 2333-2341,2007.
[22] Hbaieb, K., Wang, Q. X., Chia, Y. H. J. and  Cotterell, B., “Modelling Stiffness of Polymer/Clay Nanocomposites“ Polymer, Vol. 48, No. 3, pp. 901-909, 2007.
[23] Wang, J., Crouch, S. L. and  Mogilevskaya, S. G., “Numerical Modeling of the Elastic Behavior of Fiber-Reinforced Composites with Inhomogeneous Interphases“ Composites Science and Technology, Vol. 66, No. 1, pp. 1-18, 2006.