نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی مکانیک، پردیس دانشگاهی، دانشگاه گیلان، رشت.

2 استاد، مهندسی مکانیک، دانشگاه گیلان، رشت.

3 استادیار، مهندسی مکانیک، دانشگاه آزاد اسلامی تهران جنوب، تهرا ن.

10.22068/jstc.2019.97778.1497

چکیده

بدست آوردن خواص مکانیکی به کمک نتایج حاصل از آزمایش، به عنوان یکی از عمده‌ترین چالش‌ها در زمینه تست‌های فروروی نانو مطرح است. استفاده از روش هیبرید بوسیله ترکیب نتایج تجربی فروروی نانو با آنالیز المان‌های محدود، یکی از راه حل‌های مؤثر در این زمینه می‌باشد. لذا به منظور استخراج خواص مکانیکی مواد به کمک نتایج تست فروروی نانو، یک روش صریح مبتنی بر روش اصلاح شده آنالیز ابعادی در این مقاله توسعه داده شده است. مزیت عمده استفاده از این روش نسبت به روش های موجود در ارائه جواب‌های منحصر به فرد بدون نیاز به روش‌های تکرار و همچنین کاهش قابل توجه در حجم محاسبات می‌باشد. در این مقاله با اعمال این روش در مورد تیتانیوم خالص، خواص حالت پلاستیک (تنش تسلیم و مدول سخت شوندگی کرنشی) برای یک نمونه محاسبه شده است. برای اولین بار آنالیز ابعادی برای الگوی معادله ساختاری دو خطی (با دو پارامتر بی‌بعد) مورد استفاده قرار گرفت و در تحلیل المان محدود، فرم کلی معادله جانسون-کوک بکار رفت و مهمترین خاصیت حالت پلاستیک یعنی تنش تسلیم با تطابق بسیار خوبی با مقادیر مرجع استخراج گردید. در جریان حل، روش جدیدی در آنالیز خطا بر مبنای محاسبه برآیند خطای کلی و بدست آوردن اکسترمم خطاها در بازه تمام فضای پارامتری با موفقیت توسعه داده شده و به کار گرفته شد. همچنین برای کالیبره نمودن حل به تنظیم شرایط مهم مسئله مانند شعاع نوک فرورونده اقدام شده و نتیجه‌گیری شده است که استفاده از شعاع بالاتر از 200 نانومتر منجر به جواب منطبق‌تری با واقعیت می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

New Hybrid Approach in Obtaining Plastic properties by Nanoindentation, Finite Element Method and Modified Dimensional Analysis

نویسندگان [English]

  • Abolfazl Darvizeh 1
  • Ehsan Bazzaz 2
  • Majid Alitavoli 2
  • Mehdi Yarmohammad Tooski 3

1 Department of Mechanical Engineering, University Campus, University of Guilan, Rasht, Iran.

2 Department of Mechanical Engineering, University of Guilan, Rasht, Iran.

3 Department of Mechanical Engineering, Islamic Azad University south Tehran Branch, Tehran, Iran.

چکیده [English]

One of the main challenges in nanoindentation tests is to work-out a method in order to obtain the material properties through the test results. Using a hybrid method which combines the experimental results of nanoindentation tests with FEM analysis is considered as one of the main solutions for this problem. In order to calculate the mechanical properties, an explicit method was developed on the basis of modified dimensional analysis method. The main advantage of this method is to provide unique answers without any need for iteration so that it would minimize the calculations significantly. In this paper, the mechanical properties of Titanium in plastic phase (yield stress and strain hardening Module) are calculated by utilizing this method. For the first time, the dimensional analysis was used for the bilinear constitutive equation (with two dimensionless parameters), and in the finite element analysis, the general form of the Johnson-Cook equation was utilized. The most important property of plastic state, namely, the yield stress, was extracted in proper agreement with reference values. In the process of solving, a new method for error analysis based on calculating the resultant errors and determining the extremum error in the entire range of parameters was successfully developed and applied. Finally, in order to calibrate the solution, it was also proposed to set up the critical conditions of the problem, such as the indenter tip radius. It was concluded that the use of a radius more than 200 nm leads to a more consistent response to the experiment.

کلیدواژه‌ها [English]

  • Hybrid method
  • Dimensional analysis
  • Modified dimensional analysis
  • Minimum resultant error
  • Titanium properties
[1]
Sanjabi, S., “Study of TiNi Thin Film Mechanical Properties by Nanoindentation Mehod,”  In Persian, 7th Iranian Seminar on Surface Engineering, Isfahan, IRAN, 2006.
[2]
Cheng, Y.T. and Cheng, C. M., “Can Stress–Strain Relationships be Obtained From Indentation Curves Using Conical and Pyramidal Indenter,” J. MATERIALS RESEARCH, Vol. 14, pp. 9, 1999.
[3]
Ashrafi, H. and Shariyat, M., “Modeling of Viscoelastic Properties for Polymeric Thin Solid Layers using a Contact Nanoindentation Approach", In Persian, Iranian Journal of Surface Science and Technology, Vol. 14, pp. 17-26, 2011.
[4]
Lawn, B.R., Fracture of Brittle Solids, 2nd edn., Cambridge, UK: Cambridge University Press, 1993.
[5]
Olivier, W.C. and Pharr, W.C., “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, Vol. 7. pp. 1564–1583, 1992.
[6]
Cheng, Y. T. and Cheng, C. M., “Scaling, Dimensional Analysis, and Indentation Measurements. ,”  Materials Science and Engineering, Vol. 44. pp. 91–149, 2004.
[7]
Giannakopoulos, A. E., Larsson, P. L. and Vester, R., “Analysis of Vickers Indendation,”  Int. j. Solids Structures, Vol. 31, No. 19, pp. 2679-2708, 1994.
[8]
Dao, M., Chollacoop, N., Van Vliet, K. J., Venkatesh, T.A. and Suresh, S., “Computational Modeling of the Forward and Reverse Problems in Instrumented Shrps Indentation,”  Acta mater., Vol. 49, PP. 3899-3918, 2001.
[9]
Giannakopoulos, A. E. and Suresh, S., “Determination of Elastoplastic Properties by Instrumented sharp Indentation,”  Scripta Materialia, Vol. 40, No. 10, pp. 1191–1198, 1999.
[10]
Suresh, S., Giannakopoulos, A. E. and Alcala, J., “Spherical Indentation of Compositionally Graded Materials: Theory and Experiments,” Acta materialia, Vol. 45, No. 4, pp. 1307-1321, 1997.
[11]
Doerner, M.F. and Nix, W.D., “A Method for Interpreting the Data From Depth-Sensing Indentation Instruments,”  J. Mater. Res., Vol. 1, pp.601, 1986.
[12]
Sneddon, I.N., “The relation Between Load and Penetration in the Axisymmetric Bousinesq Problem for a Punch of Arbitrary Profile,”  International Journal of Engineering Science, Vol. 3, pp. 47-57, 1965.
[13]
Suresh, S. and Giannakopoulos, A. E., “Report Inst-2/98,” Massachusetts Institute of Technology, 1998.
[14]
Stauss, S., Schwaller, P., Bucaille, JL., Rabe, R. and Rohr, L., “Determining the Stress-Strain Behaviour of Small Devices by Nanoindentation in Combination with Inverse Methods,” Microelectron Eng., Vol. 67-68, pp. 818–825, 2003.
[15]
Heinrich, C., Waas, A.M. and Wineman, A.S., “Determination of Material Properties Using Nanoindentation and Multiple Indenter Tips,”  International Journal of Solids and Structures, Vol. 46, pp. 364–376, 2009.
[16]
Antunes, J. M., Fernandes, J. V., Menezes, L. F. and Chaparro, B. M., “A New Approach for Reverse Analyses in Depth-Sensing Indentation Using Numerical Simulation,”  Acta Materialia, Vol. 55, pp. 69–81, 2007.
[17]
Fischer-Cripps, A.C.,"Nanoindentation", Third ed., New York: Springer, 2011.
[18]
Pelletier, H., Krier, J., Cornet, A. and Mille, P., “Limits of Using Bilinear Stress strain Curve for Finite Element Modeling of Nanoindentation Response on Bulk Materials,”  Thin Solid Films, Vol. 379, pp. 147-155, 2000.
[19]
Lichinchi, M., Lenardi, C., Haupt, J. and Vitali, R., “Simulation of Berkovich Nanoindentation Experiment on Thin Films Using the Finite Element Method,”  Thin Solid Films, Vol. 312, pp. 240–248, 1998.
[20]
Patel, D.K. and Kalidindi, S.R., “Correlation of Spherical Nanoindentation Stress-Strain Curves to Simple Compression Stress-Strain Curves for Eelastic-Plastic Isotropic Materials Using Finite Element Models,”  Acta Materialia, Vol. 112, pp. 295-302, 2016.
[21]
pelletier, H., “Predictive Model to Estimate the Stress–Strain Curves of Bulk Metals Using Nanoindentation,”  Tribology International Vol. 39, pp.593–606, 2006.
[22]
Guillonneau, G., Kermouche, G., Bec, S. and Loubet, J., “Determination of Mechanical Properties by Nanoindentation Independently of Indentation Depth Measurement,”  Journal of Materials Research, Cambridge University Press (CUP), Vol. 27, pp.2551-2560, 2012.
[23]
Su, C. and Anand, L., “Plane Strain Indentation of a Zr Based Metallic Glass: Experiments and Numerical Simulation,”  Acta Mater., Vol. 54, pp. 179–189, 2006.
[24]
Misra, RDK., Venkatsurya, P., Wu, KM. and Karjalaine, LP., “Ultrahigh Strength Martensite-Austenite Dual-Phase Steels with Ultrafine Structure: the Response to Indentation Experiments,”  Mater. Sci. Eng. A, Vol. 560, pp. 693–699, 2013.
[25]
Karimzadeh, A., Ayatollahi, M. R. and Alizadeh, M., “Finite Element Simulation of Nano-Indentation Experiment on Aluminum 1100,”  Computational Materials Science, Vol. 81, pp. 595–600, 2014.
[26]
Vaidyanathan, R., Dao, M., Ravichandran, G. and Suresh, S., “Study of Mechanical Deformation in Bulk Metallic Glass Through Instrumented Indentation,”  Acta Mater., Vol. 49, pp. 3781–3789, 2001.
[27]
Kang, JJ., Becker, AA. and Sun, W., “Determining Elasticplastic Properties From Indentation Data Obtained From Finite Element Simulations and Experimental Results,”  Int. J. Mech. Sci., Vol. 62, pp. 34-46, 2012.
[28]
Antunes, JM., Menezes, LF. and Fernandes, JV., “Three-Dimensional Numerical Simulation of Vickers Indentation Tests,” Int. J. Solids Struct., Vol. 43, pp. 784–806, 2006.
[29]
Ashrafi, H., Meraji, M. and Farid, M., “A Three Dimensional Finite Element Modeling of Nanoindentation for Solid Surfaces and Thin Films,”  In Persian, 10th Iranian Seminar on Surface Engineering,  Isfahan, IRAN, 2009.
[30]
J. Malzbender, “Indentation Load-displacement Plastic Deformation, and Energy,”  J. Mater. Res., Vol. 17, pp. 502–511, 2002.
[31]
Sakharova, NA., Fernandes, JV., Antunes, JM. and Oliveira, M., “Comparison Between Berkovich, Vickers and Conical Indentation Tests: a Three-Dimensional Numerical Simulation Study,”  Int. J. Solids Struct., Vol. 46, pp. 1095–1104, 2009.
[32]
Gerberich, W.W, Yu. W., Bahr, D., Nelson, J., Lilleodden, E., Kramer, D. and Strojny, A., “Elastic Loading and Elastoplastic Unloading from Nanometer Level Indentations for Modulus Determinations,”  Journal of Materials Research, Vol. 13, No. 1, pp. 421-436, 1998.
[33]
ISO-14577, in: Part 2 & 3, Geneva, Switzerland, 2002.
[34]
Li, W., Huang, C., Yu, M. and Liao, H., “Investigation on Mechanical Property of Annealed Copper Particles and Cold Sprayed Copper Coating by a Micro-Indentation Testing.,”  Mater. Des., Vol. 46, pp. 219–226, 2013.
[35]
Shariyat, M. and Ashrafi, H., “Numerical Analysis of Contact Problems with Friction on Nano-indentation by a Modified Augmented Lagrangian Optimization Approach, In Persian,” Mechanical Aerospace Journal, Vol. 8, No. 1, pp. 1-12, 2011.
[36]
Begley, MR., Evans, AG. and Hutchinson, JW., “Spherical Impression of Thin Elastic Films on Elastic–Plastic Substrates,”  Int. J. Solids Struct., Vol. 36, pp. 2773–2788, 1999.
[37]
Wen, W., Beker, A.A. and Sun, W., “Determination of Material Properties of Thin Films and Coatings Using Indentation Tests: a review,”  Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK, Springer, 2017.
[38]
Vlachos, D.E., Markopoulos, Y.P. and Kostopoulos, V., “3D Modelling of Nanoindentation Experiment on a Coating-Substrate System,”  Computational Mechanics, Vol. 27, pp. 138-144, 2001.
[39]
“Analysis User's Guide, Dassault Systems, ABAQUS 6.14,” 2014.
[40]
Stopel, M. and Skibicki, D., “Determination of Johnson-Cook Model Constants by Measurement of Strain Rate by Optical Method,”  AIP Conference Proceedings 1780, 060003, 2016.
[41]
Bressan, J.D., Tramontin, A. and Rosa, C., “Modelling of Nanoindentation of Bulk and Thin Film by Finite Element Method,”  Wear, Vol. 258, pp. 115-122, 2005.
[42]
Zhaohui, S. and Suresh, S., “Elastic–Plastic Characterization of Thin Films Using Nanoindentation Technique,”  Thin Solid Films, Vol. 437, pp. 176–182, 2003.
[43]
PERZYNSKI, K., MAJOR, L., KOPERNIK, M. and MADEJ, L., “Analysis of the Stress Distribution in the Nanogrid Coatings Based on Digital Representation of the Structure,”  In˙zynieria Materiałowa, Vol. 31, pp. 735, 2010.
[44]
Boyer, R., Welsch, G. and Codings, E.W., “Materials Properties Handbook: Titanium Alloys, Section II: Titanium Data Sheets, 4th printing,” USA, ASM International, Materials park, p. 165., 2004