نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشگاه بوعلی سینا، همدان.

2 استاد، مهندسی مکانیک، دانشگاه بوعلی سینا، همدان.

3 استادیار، مهندسی مکانیک، دانشگاه صنعتی همدان، همدان.

10.22068/jstc.2019.98620.1499

چکیده

در این پژوهش، اثرات نانو رس اصلاح شده کلوزیت 20A و گرافن اکسید بر رفتار فشاری نانوکامپوزیت‌ پلی‌کربنات مورد بررسی قرار گرفته است. نمونه‌ها با روش تزریق تهیه گردیده و از روش مستربچ برای توزیع بهتر نانو در فاز زمینه استفاده شده است. مستربچ نانو رس از روش مستقیم به کمک دستگاه اکسترودر و مستربچ گرافن اکسید به کمک روش حلال ساخته شده است. نمونه‌های نانوکامپوزیت رس و گرافن اکسید به ترتیب در سه درصد وزنی 0.5%، 1% 3% و 0.3%، 0.6%، 0.9% ساخته شده‌اند. آزمون فشار در سه نرخ کرنش ε ̇=〖10〗^(-3),〖10〗^(-2),〖10〗^(-1) s^(-1) در دمای محیط به کمک دستگاه یونیورسال سنتام انجام گرفته است. نتایج نشان داد که با افزایش نرخ کرنش، تنش تسلیم افزایش می‌یابد. همچنین، بهترین درصد وزنی رس و گرافن اکسید 1% و 0.6% بود که به ترتیب باعث بهبود 7.6% و6.2% در تنش تسلیم فشاری گردید. در ادامه، مدلی به منظور پیش‌بینی منحنی تنش-کرنش فشاری در نرخ‌های مختلف بر اساس اصلاح مدل جی‌سل-‌جوناس ارائه گردید. مدل ارائه شده به خوبی منحنی تنش-کرنش را در نرخ‌های مختلف پیش‌بینی نمود. در پایان، بر اساس ترکیب مدل ارینگ و مدل میکرومکانیکی تورسانی و همکاران مدلی برای توصیف تنش تسلیم نانوکامپوزیت بر اساس درصد وزنی فیلر و نرخ کرنش ارائه شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental study of the compression behavior of Graphene Oxide and Nano-clay reinforced polycarbonate nanocomposites at low strain rates

نویسندگان [English]

  • Hossein Malekmohammadi 1
  • Gholamhossein majzoobi 2
  • Javad Payandehpeyman 3

1 Department of Mechanical Engineering, Bu-Ali Sina University, Hamedan, Iran.

2 Department of Mechanical Engineering, Bu-Ali Sina University, Hamedan, Iran.

3 Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran.

چکیده [English]

In this study, the effects of Cloisite 20A modified nanoclay and graphene oxide on the compression behavior of polycarbonate nanocomposite were examined by experiment. Samples were prepared based on injection and the masterbatch method was used for a better dispersion of nano particles in the matrix phase. The masterbatch of nanoclay was prepared through the direct method using an extruder, and the masterbatch of graphene oxide was prepared using the solvent method. The clay reinforced nanocomposite were prepared for three weight percentages of 0.5%, 1%, 3%, and samples of graphene oxide nanocomposites were produced for 0.3%, 0.6%, 0.9%. The compression test was performed at three strain rates of ε ̇=〖10〗^(-3),〖10〗^(-2),〖10〗^(-1) s^(-1) at ambient temperature using a universal testing machine, Santam. The results showed that, by increasing the strain rate, the yield stress is increased. Moreover, the best weight percentage of clay and graphene oxide was 1% and 0.6%, respectively, which made improvement of 7.6% and 6.2% in the compression yield stress, respectively. Additionally, a model was proposed for predicting the compressive stress-strain curve at various strain rates based on a modified G’sell-Jonas model. The proposed model could reasonably predict the stress-strain curves at the applied strain rates. Finally, based on the combination of Eyring model and the micromechanical model of Turcsanyi, a model was proposed for describing the yield stress of the nanocomposite based on volume percentage of filler and strain rate.

کلیدواژه‌ها [English]

  • Polycarbonate
  • Graphene oxide
  • Nanoclay
  • Compressive yield stress
  • diagram Stress-Strain
 
[1] Mazumdar, S., “Composites Manufacturing: Materials, Product, and Process Engineering”, First ed., CRC Press, United States, pp. 25-28, 2001.
[2] Harper, C. A., “Handbook of Plastics, Elastomers, and Composites”, Fourth ed.,  McGraw-Hill, New York, pp.30-32, 2002.
[3] Blumenthal, W. R., “Influence of Temperature and Strain Rate on the Compressive Behavior of PMMA and Polycarbonate Polymers, ” AIP Conference Proceedings, Vol. 620, pp. 665–668, 2002.
[4] Siviour, C. R., Walley, S. M., Proud, W. G., Field, J. E., “The High Strain Rate Compressive Behaviour of Polycarbonate and Polyvinylidene Difluoride,” Polymer, Vol. 46, No. 26, pp. 12546–12555, 2005.
[5] Omar, M. F., Akil, H. M., Ahmad, Z. A., “Measurement and Prediction of Compressive Properties of Polymers at High Strain Rate Loading,” Material and Design., Vol. 32, No. 8–9, pp. 4207–4215, 2011.
[6] Nakai, K., Yokoyama, T., “Uniaxial Compressive Response and Constitutive Modeling of Selected Polymers Over a Wide Range of Strain Rates,” Journal of Dynamic Behavior of Materials, Vol. 1, No. 1, pp. 15–27, 2015.
[7] Fareed, M. A., Stamboulis, A., “Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement,” International Journal of Biomaterials, 2014.
[8] Najafi, A., Kord, B., Abdi, A., Ranaee, S., “The Impact of the Nature of Nanoclay on Physical and Mechanical Properties of Polypropylene/reed Flour Nanocomposites,” Journal of Thermoplastic Composite Materials, Vol. 25, No. 6, pp. 717–727, 2012.
[9] Hossen, M. F., Hamdan, S., Rahman, M. R., Rahman, M. M., Liew, F. K., Lai, J. C., “Effect of Fiber Treatment and Nanoclay on the Tensile Properties of Jute Fiber Reinforced Polyethylene/clay Nanocomposites,” Fibers and Polymers., Vol. 16, No. 2, pp. 479–485, 2015.
[10]        Babaei, I., Madanipour, M., Farsi, M., Farajpoor, A., “Physical and Mechanical Properties of Foamed HDPE/Wheat Straw Flour/Nanoclay Hybrid Composite,” Composites Part B: Engineering, Vol. 56, pp. 163–170, 2014.
[11] Zhu, Y., Murali, S., Cai, W.,  Li, X., Suk, J.W., Potts, J.R.,  Ruoff, R.S., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 22, No. 35, pp. 3906–3924, 2010.
[12]        Al-Lafi, W., Jin, J., Song, M., “Mechanical Response of Polycarbonate Nanocomposites to High Velocity Impact,” European Polymer Journal, Vol. 85, No. Supplement C, pp. 354–362, 2016.
[13]        Hsieh, A.J., Moy, P., Beyer, F.L., Madison, P., Napadensky, E., Ren, J., Krishnamoorti, R., “Mechanical Response and Rheological Properties of Polycarbonate Layered-Silicate Nanocomposites,” Polymer Engineering And Science, Vol. 44, No. 5, pp. 825–837, 2004.
[14] Katja, N.,  Vuorinen,J., Villman, V., Suihkonen, R.,  Ja¨rvela¨, P., Sundelin, J.,  Lepisto, T., “Characterization of Twin-Screw-Extruder Compounded Polycarbonate Nanoclay Composites,” Polymer Engineering And Science, Vol. 49, No. 4, pp.631-640, 2009.
[15] King, J.A., Via, M.D., Morrison, F.A., Wiese, K.R., Bearch, E.A., Cieslinski, M.J., Bogucki, G.R, “Characterization of Exfoliated Graphite Nanoplatelets/Polycarbonate Composites: Electrical and Thermal Conductivity, and Tensile, Flexural, and Rheological Properties,” Journal of Composite Materials., Vol. 46, No. 9, pp. 1029–1039, 2012.
[16]        Moy, P., Weerasooriya, T., Chen, W., “Mechanical Response of Polycarbonate Nano-Composites as a Function of Strain Rate and Weight Percent of Nano-Silicate Clay Loading,” Dynamic Behavior of Materials, Volume 1: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, Conference Proceedings of the Society for Experimental Mechanics Series., Vol. 1, pp. 17–20, 2018.
[17]        Shokrieh, M.M., Joneidi, V.A., “Manufacturing and Experimental Charact Terization of Graphene / Polypropylene Nanocomposites.” In Persian, Modares Mechanical Engineering,  Vol. 13, No. 11, pp. 55–63, 2014.
[18]        Payganeh, G., Ghasemi, I., Rahmani, M., Kazemnejad, A., “An Investigation on the Impact properties of Nanocomposite Based on Polypropylene / Graphene Nanosheets / Nano Clay Using Response Surface Methodology,” In Persian, Modares Mechanical Engineering,  Vol. 15, No. 9, pp. 271–279, 2015.
[19]        Payandehpeyman, J. Majzoobi, Gh. and Bagheri, R., “Experimental, Analytical and Numerical Investigation of Polypropylene Nanocomposites Microhardness”, In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 2, pp. 165-176, 2016.
[20]        Duffo, P., Monasse, B., Haudin, J. M., G’Sell, C., Dahoun, A., “Rheology of Polypropylene in the Solid State,” Journal of Materials Science, Vol. 30, No. 3, pp. 701–711, 1995.
[21]        G’sell, C., and Jonas, J. J., “Determination of the Plastic Behaviour of Solid Polymers at Constant True Strain Rate,” Journal of Materials Science, Vol. 14, No. 3, pp. 583–591, 1979.
[22]        Schang, O., Billon, N.,  Muracciole, J., Fernagut, F., “Mechanical behavior of a ductile polyamide 12 during impact,” Polymer Engineering and Science, Vol. 36, No. 1374, pp. 541–550, 1996.
[23] Shokrieh, M. M., Shamaei Kashani, A. R., Mosalmani, R., “A Dynamic-Micromechanical Constitutive Model to Predict the Strain Rate Dependent Shear Behavior of Neat and Reinforced Polymers with Carbon Nanofibers,” Modares Mechanical Engineering, Vol. 15, No. 7, pp. 13-21, 2015
[24] Shokrieh, M. M., Shamaei Kashani, A. R., Mosalmani, R., “A Dynamic Constitutive‑Micromechanical Model to Predict the Strain Rate‑Dependent Mechanical Behavior of Carbon Nanofber/ Epoxy Nanocomposites,” Iranian Polymer Journal, Vol. 25, No. 6, pp. 487-501, 2016
[25] Shokrieh, M.M., Joneidi, V.A., “Characterization and Simulation of Impact Behavior of Graphene/ Polypropylene Nanocomposites Using a Novel Strain Rate–Dependent Micromechanics Model,”Journal of Composite Materials, Vol. 49, No. 19, pp. 2317-2328, 2015
[26]Mulliken, AD., Boyce, MC., “Mechanics of the Rate-Dependent Elastic-plastic Deformation of Glassy Polymers from Low to High Strain Rates”. International Journal of Solids and Structures, Vol. 43, No. 5, pp. 1331–1356, 2006.
[27]Buckley, CP., Dooling, PJ., Harding, J., Ruiz, C., “Deformation of Thermosetting Resins at Impact Rates of Strain. Part 2: constitutive model with rejuvenation”. Journal of the Mechanics and Physics of Solids. Vol. 52, No. 10, pp. 2355–2377, 2004.
[28]Porter, D., Gould, PJ., “Predictive Nonlinear Constitutive
Relations in Polymers Through Loss History”. International Journal of Solids and Structures. Vol. 46, No. 9, pp. 1981–1993, 2009.
[29]        Eyring, H., “Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates,” The Journal of Chemical Physics, Vol. 4, No. 4, pp. 283–291, 1936.
[30]        Turcsányi, B., Pukánszky, B., Tüdõs, F.,  “Composition Dependence of Tensile Yield Stress in Filled Polymers,” Journal of Materials Science Letters, Vol. 7, No. 2, pp. 160–162, 1988.
[31] Miehe, C., Goektepe, S., Mendez Diez, J., “Finite Viscoplasticity of Amorphous Glassy Polymers in the Logarithmic Strain Space”, International Journal of Solids and Structures,Vol.46, No.1, pp. 181-202, 2004. 
[32] Lei, S.G., Hoa, S.V., Ton-That, M.-T., “Effect of Clay Types on the Processing and Properties of Polypropylene Nanocomposites”, Composites Science and Technology,Vol. 66, No. 10, pp. 1274-1279, 2006.
[33] Kiss, A., Fekete,E., Puka´nszky, B., “Aggregation of CaCO3 Particles in PP Composites: Effect of Surface Coating”, Composites Science and Technology,Vol. 67, No.7-8, pp. 1574-1583, 2007.