نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

2 کارشناس ارشد، مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

10.22068/jstc.2018.87223.1449

چکیده

در این تحقیق، خواص کششی، شامل استحکام کششی، مدول الاستیک و ازدیاد طول نانوکامپوزیت‌های سه تایی پلی پروپیلن/ لاستیک نیتریل کربوکسیل شده تقویت شده با نانوذرات سیلیکا بررسی شده است. برای طراحی آزمایش جهت تهیه ترکیبات از طرح Box-Behnken روش رویه پاسخ (RSM) استفاده شده است. بر اساس این طرح ازمایش 15 نمونه شامل 0، 2 و 4 درصد وزنی نانو ذرات سیلیکا 0، 3 و 6 درصد وزنی عامل سازگار کننده پلی پروپیلن مالئیکه (PP-gMA) و نیز 0، 5 و 10 درصد وزنی لاستیک نیتریل کربوکسیل شده توسط یک اکسترودر همسوگرد تهیه شدند. آزمون‌ مکانیکی کشش برای تعیین استحکام‌ کششی، مدول الاستیسیته و ازدیاد طول تا شکست ترکیبات انجام شد. نتایج نشان داد که افزودن نانو ذرات سیلیکا مدول الاستیک ( به میزان 14 درصد) و استحکام کششی ( به میزان 4 درصد) ترکیبات را افزایش می دهد. همچنین حضور لاستیک نیتریل کربوکسیل شده موجب افزایش ازدیاد طول تا شکست ( به میزان 39 درصد) ترکیبات شده است و افزایش عامل سازگار کننده پلی پروپیلن مالئیکه اندکی استحکام کششی را افزایش می دهد. همچنین مشاهده شد که لاستیک نیتریل کربوکسیل شده بیشترین تاثیر را بر استحکام کششی و ازدیاد طول تا شکست دارد و نانو ذرات سیلیکا بیشترین تاثیر بر مدول الاستیک را دارند. در پایان برای هر خاصیت کششی یک مدل رگرسیون برحسب فاکتورهای موثر ارائه شد

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Experimental analysis of tensile properties nanocomposites based on polypropylene/ Carboxylated Nitrile Rubber /Silica nano powder by using response surface methodology

نویسندگان [English]

  • Mohammad Morad Sheikhi 1
  • Ali Sanaei 2

1 Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2 Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

چکیده [English]

In this study, tensile properties of nanocomposites based on polypropylene/ Carboxylated Nitrile Rubber /Silica nano powder (PP/XNBR/Sic) were studied by using response surface methodology(RSM). The design of the experiment was carried out using Box-Behnken of the RSM method. The samples were produced using a co-rotating twin screw extruder including 0,2,4 Wt.% of nano particles, 0, 5, 10 Wt.% of carboxylated Nitrile Rubber and 0,3,6 Wt.% of Polypropylene-g-glycidyl Methacrylate (PP-gMA) as comptabilizer. tensile test was carried out to obtain tensile strength, elastic modulus and elongation at break of nano composites. The results showed that elastic modulus and tensile strength of nanocomposites were increased with addition of nano silica powder by 45% and 9% respectively. Also, the presence of XNBR was increased elongation at break by 39% and increasing the comptabilizer factor (PP-gMA) has slightly increased the tensile strength. In addition, it was found that XNBR has the greatest effect on tensile strength and elongation at break and silica nano powder has the greatest effect on elastic modulus. Finally, a regression model was obtained for tensile strength, elastic modulus and elongation at break, respectively

کلیدواژه‌ها [English]

  • Polypropylene
  • tensile properties
  • Silica nano powder
  • Response surface methodology
  • nano composite

[1] Selvakumar, V., Palanikumar, K., Palanivelu, K., “Studies of mechanical characterization of Polypropylene/Na+-MMT nanocomposites,” Journal of Minerals & Materials characterization &Engineering, Vol.9, No.8, 2010, pp.671-681.

[2] Bikiaris, D., “Microstracture and properties of polypropylene/carbon nanotube nanocomposites,” Materials, Vol. 3, No. 4, 2010, pp. 2884-2946.

[3] Wang, Y., Zou, H., Fu, Q., Zhang, G., Shen, K., Thomann R.,“Shear-induced morphological change in PP/LLDPEblend,” Macromolecular Rapid Communications, Vol. 23, 2002, pp. 749–752.

[4] Huerta-Martínez, B.M., Ramirez-Vargas, E., Medellín-Rodrequez, F.J., Garcia, R.C., “Compatibilitymechanismsbetween EVA and complex impact heterophasicPP-EPx copolymers as a function of EP content,” EuropeanPolymer Journal, Vol. 41, 2005, pp. 519–525.

[5] González, J., Albano, C., Ichazo, M., Díaz, B.,“Effects ofcoupling agents on mechanical and morphologicalbehavior of the PP/HDPE blend with two differentCaCO3,” European Polymer Journal, Vol. 38, 2002, pp. 2465–2475.

[6] Kargarzadeh, H., Ahmad, I., “Mechanical Properties of Epoxy–Rubber Blends,” Handbook of epoxy blends, 2016, pp. 1-36.

[7] Bagheri, R., Marouf, B., “Rubber-toughened Epoxies: A Critical Review,” Journal of Macromolecular Science Part C: Polymer Reviews, Vol. 49, 2009, pp. 201-225.

[8]  Yang, H.,  Zhang, Q.,  Guo, M.,  Wang, C.,  Du, R.,  Fu, Q., “Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites,” Polymer, Vol. 47, 2006, pp. 2106-2115.

[9] Ashenai Ghasemi, F., Ghasemi, I., Daneshpayeh, S., “A study on effect of titanium dioxide nanoparticles on the elastic modulus, impact and tensile strengths of polypropylene/linear low density polyethylene (PP/LLDPE) blends,” Journal of science and technology of composites, Vol. 4, 2018, pp. 386-390

[10] Ashenai Ghasemi, F., eslami farsani, M., “Effect of nano-CaCO3 on dynamic mechanical properties of Polypropylene,” Modares mechanical engineering, Vol. 13, 2013, pp. 1-10

[11] Jumahat, A., Soutis, C., “Tensile Properties of Nanosilica/Epoxy Nanocomposites,” Procedia Engineering, Vol. 41, 2012, pp.1634-1640.

[12] Mohsenzadeh, R., Shelesh-Nezhad, K., “Experimental studies on the durability of PA6-PP-CaCO3 nanocomposite gears,” Journal of science and technology of composites, Vol. 3, 2016, pp. 147-156.

[13] Kumar, K., Ghosh, P. K., “Improving Mechanical and Thermal Properties of TiO2-Epoxy Nanocomposite,” Composites Part B: Engineering, Vol. 97, 2016, pp. 353-360.

[14] Eslami-Farsani, R., Shahrabi-Farahani, A., Khosravi, H., Zamani, M.R., “A study on the flexural response of grid composites containing multi-walled carbon nanotubes,” journal of science and technology of composites, Vol. 71, 2017, pp. 101-108.

[15] Haghbin, A., Liaghat, G., Arabi, A., Pol, M., “Improving shear strength in nanocomposites through electrophoretic deposition of carbon nanotubes,” Modares mechanical engineering, Vol. 17, 2017, pp. 462-472.

[16] Ying, Z., Xianggao, L., “Highly Exfoliated Epoxy/clay Nanocomposites: Mechanism of Exfoliation and Thermal/mechanical Properties,” Composite Structures, Vol. 132, 2015, pp. 44-49.

[17] Garcia, M., Vilet, G.V., Jain, S., “Polypropylene/SiO2nanocomposites with improvedmechanicalproperties,” Rev. Adv. Mater. Sci., Vol. 6, 2004, pp. 169-175.

[18] Daneshpayeh, S., Tarighat, A., Ashenai Ghasemi, F. and Bagheri, M.S., “A fuzzy logic model for prediction of tensile properties of epoxy/glass fiber/silica nanocomposites,” Journal of Elastomers and Plastics”, 2017, DOI: 10.1177/0095244317733768.

[19] Mirzapour A, Asadollahi, M H, Baghshaei, S, Akbari, M., “Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite,” Composites Part A: Applied Science and Manufacturing, Vol. 63, 2014, pp. 159-167.

[20] Jacob, S., Suma, K K, Mendez, J. M., George, K. E., “Reinforcing effect of nanosilica on polypropylene–nylon fiber composite,” Materials Science and Engineering: B, Vol. 168, 2010, pp. 245-249.

[21] Ashenai Ghasemi, F., Daneshpayeh, S., Ghasemi, I., Ayaz, M., “An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/ TiO2) using response surface methodology,” Polym Bull, Vol. 73, 2016, pp. 1741-1760.

[22] Zare, Y., Garmabi, H., Sharif, F., “Optimization of Mechanical Properties of PP/Nanoclay/ CaCO3 Ternary Nanocomposite Using Response Surface Methodology,” Journal of applied polymer science, Vol. 122, 2011, pp. 3188-3200.

[23] Daneshpayeh, S., Ashenai Ghasemi, F., Ghasemi, I., “Mechanical Properties of Nanocomposites Based on Polypropylene-linear Low Density Polyethylene-titanium Dioxide Nano Particles by Response Surface Methodology,” journal of Tabriz mechanical engineering, Vol. 77, 2017, pp. 903-101.

 [24] Montgomery, DC., “Design and analysis of experiments,” New York, John Wiley. 2001.

[25] Ershad-Langroudi, A., Akkaf, M.H., “Improvement in the mechanical properties of polyester nanocomposite with nano-silica prepared by sol-gel method,” Journal of science and technology of compositess, Vol. 3, 2017, pp. 419-428.

[26] Pustak, A., Denac, M., Leskovac, M., Svab, I., Musil, V., Smit I., “Polypropylene/silica micro-and nanocomposites modified with poly (styrene-b-ethylene-co-butylene-b-styrene,” Journal of Applied Polymer Science, Vol. 132, 2015, pp. 1-12.

[27] Nitta, H., Shin, Y.W., Hashiguchi, H., Tanimoto, S., Terano, M.,“Morphology and mechanical properties inthe binary blends of isotactic polypropylene and novelpropylene-co-olefin random copolymers with isotacticpropylenesequenceEthylene-propylene copolymers,” Polymer, Vol. 46, 2005, pp. 965–975.

 [28] Altan, M., Yildirim, H., “Mechanical and Morgholigical properties of Polypropylene and High density polyethylene matrix composites reinforced with surface modified nano sized TiO2 particles”, Word Academy of science, Engineering and Technology, Vol. 70, 2010, pp. 289.